Advertisement

SuperMEN1 pp 87-95 | Cite as

Role of Menin in Neuroendocrine Tumorigenesis

  • Terry C. Lairmore
  • Herbert Chen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 668)

Abstract

The menin protein encoded by the MEN1 tumor suppressor gene is ubiquitously expressed and highly conserved evolutionarily. The combination of findings from current in vitro and in vivo studies has not yielded a comprehensive understanding of the mechanisms of menin’s tumor suppressor activity or the specific role for menin in endocrine tumorigenesis, although its diverse interactions suggest possible pivotal roles in transcriptional regulation, DNA processing and repair and cytoskeletal integrity. This manuscript summarizes recent research findings including studies of global gene expression in MEN1-associared neuroendocrine tumors and pivotal changes in intracellular signaling pathways associated with neuroendocrine tumorigenesis. Finally, the clinical applications provided by the understanding of the effects of MEN1 gene mutations on neuroendocrine tumor development in patients with this familial cancer syndrome are discussed.

Keywords

Pancreatic Islet Neuroendocrine Tumor Carcinoid Tumor Multiple Endocrine Neoplasia Type Medullary Thyroid Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guru SC, Crabtree JS, Brown KD et al. Isolation, genomic organization and expression analysis of Men 1, the murine homolog of the MEN1 gene. Mammalian Genome 1999; 10(6):592–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Stewart C, Parente F, Piehl F et al. Characterization of the mouse Men 1 gene and its expression during development. Oncogene 1998; 17:2485–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Crabtree JS, Scacheri PC, Ward JM et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proceedings of the National Academy of Sciences of the USA 2001; 98(3):1118–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Guru SC, Goldsmith PK, Burns AL et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proceedings of the National Academy of Sciences of the USA 1998; 95:1630–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Agarwal SK, Guru SC, Heppner C et al. Menin interacts with the AP 1 transcription factor JunD and represses lunD-activated transcription. Cell 1999; 96:143–52.CrossRefPubMedGoogle Scholar
  6. 6.
    Gobl AE, Berg M, Lopez-Egido JR et al. Menin represses JunD-activated transcription by a histone deacetylase-dependent mechanism. Biochim Biophys Acta 1999; 1447(1):51–6.PubMedGoogle Scholar
  7. 7.
    Heppner C, Bilimoria KY, Agarwal SK et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 2001; 20(36):4917–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaji H, Canaff L, Lebrun JJ et al. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling. Proceedings of the National Academy of Sciences of the USA 2001; 98(7):3837–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Lemmens IH, Forsberg L, Pannett AA et al. Menin interacts directly with the homeobox-containing protein Pem. Biochem Biophys Res Commun 2001; 286(2):426–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Ohkura N, Kishi M, Tsukada T et al. Menin, a gene product responsible for multiple endocrine neoplasia type 1, interacts with the putative tumor metastasis protein nm23. Biochim Biophys Res Commun 2001; 282(5):1206–10.CrossRefGoogle Scholar
  11. 11.
    Sukhodolets KE, Hickman AB, Agarwal SK et al. The 32-Kilodalton subunit of replication protein A interacts with men in, the product of the MEN1 tumor suppressor gene. Molecular and Cellular Biology 2003; 23:493–509.CrossRefPubMedGoogle Scholar
  12. 12.
    Agarwal SK, Kennedy PA, Scacheri PC et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm Metab Res 2005; 37(6):369–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Schnepp RW, Hou Z, Wang H et al. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res 2004; 64(18):6791–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim YS, Burns AL, Goldsmith PK et al. Stable overexpression of MEN1 suppresses tumorigenicity of RAS. Oncogene 1999; 18(43):5936–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Elledge SJ, Lin S-Y. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003; 113:881–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen YX, Yan J, Keeshan K et al. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc Natl Acad Sci USA 2006; 103(4):1018–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Yokoyama A, Somervaille TC, Smith KS et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123(2):207–18.CrossRefPubMedGoogle Scholar
  18. 18.
    Yokoyama A, Wang Z, Wysocka J et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone merhyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24(13):5639–49.CrossRefPubMedGoogle Scholar
  19. 19.
    Lairmore TC, Moley JF. The multiple endocrine neoplasia syndromes. In: Townsend CM, ed. Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice. 18th ed. Philadelphia: W.B. Saunders Company, 2008Google Scholar
  20. 20.
    Scacheri PC, Davis S, Odom DT et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet 2006; 2(4):e51.CrossRefPubMedGoogle Scholar
  21. 21.
    Schnepp RW, Chen YX, Wang H et al. Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res 2006; 66(11):5707–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Dilley WG, Kalyanaraman S, Verma S et al. Global gene expression in neuroendocrine tumors from patients with the MEN1 syndrome. Mol Cancer 2005; 4(1):9.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu MX. Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis. Apoptosis 2003; 8(1):11–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Schnepp RW, Mao H, Sykes SM et al. Menin induces apoptosis in murine embryonic fibroblasts. J Biol Chem 2004; Mar 12;279(11):10685–91. Epub 2003 Dec 18.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee MP, Feinberg AP. Genomic imprinting of a human apoptosis gene homologue, TSSC3. Cancer Res 1998; 58(5):1052–6.PubMedGoogle Scholar
  26. 26.
    Muller S, van den Boom D, Zirkel D et al. Retention of imprinting of the human apoptosis-related gene TSSC3 in human brain tumors. Hum Mol Genet 2000; 9(5):757–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Gebre-Medhin S, Olofsson C, Mulder H. Islet amyloid polypeptide in the islets of Langerhans: friend or foe? Diabetologia 2000; 43(6):687–95.CrossRefPubMedGoogle Scholar
  28. 28.
    Itoh H, Takei K. Immunohistochemical and statistical studies on the islets of Langerhans pancreas in autopsied patients after gastrectomy. Human Pathology 2000; 31(11):1368–76.CrossRefPubMedGoogle Scholar
  29. 29.
    Karlsson E, Sandler S. Islet amyloid polypeptide promotes β-cell proliferation in neonatal rat pancreatic islets. Diabetologia 2001; 44(8):1015–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Rumora L, Hadzija M, Barisic K et al. Amylin-induced cytotoxicity is associated with activation of caspase-3 and MAP kinases. Biological Chemistry 2002; 383(11):1751–8.CrossRefGoogle Scholar
  31. 31.
    Zhang S, Liu J, MacGibbon G et al. Increased expression and activation of c-Jun contributes to human amylin-induced apoptosis in pancreatic islet β-cells. Journal of Molecular Biology 2002; 324(2):271–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Maitra A, Hansel DE, Argani P et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res 2003; 9(16 Pt 1):5988–95.PubMedGoogle Scholar
  33. 33.
    Schnepp RW, Mao H, Sykes SM et al. Menin induces apoptosis in murine embryonic fibroblasts. J Biol Chem 2004; 279(11):10685–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Cardozo AK, Heimberg H, Heremans Y et al. A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic β-cells. J Biol Chem 2001; 276(52):48879–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Scearce LM, Brestelli JE, McWeeney SK et al. Functional genomics of the endocrine pancreas: the pancreas clone set and PancChip, new resources for diabetes research. Diabetes 2002; 51(7):1997–2004.CrossRefPubMedGoogle Scholar
  36. 36.
    Shalev A, Pise-Masison CA, Radonovich M et al. Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFβ signaling pathway. Endocrinology 2002; 143(9):3695–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Cardozo AK, Heimberg H, Heremans Y et al. A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic β-cells. Journal of Biological Chemistry 2001; 276(52):48879–86.CrossRefPubMedGoogle Scholar
  38. 38.
    Shalev A, Pise-Masison CA, Radonovich M et al. Oligonucleotide microarray analysis of intact human pancreatic islets: identification of glucose-responsive genes and a highly regulated TGFβ signaling pathway. Endocrinology 2002; 143(9):3695–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Kunnimalaiyaan M, Chen H. The Raf-1 pathway: a molecular target for treatment of select neuroendocrine tumors? Anticancer Drugs 2006; 17(2):139–42.CrossRefPubMedGoogle Scholar
  40. 40.
    Kunnimalaiyaan M, Traeger K, Chen H. Conservation of the Notch 1 signaling pathway in gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol 2005; 289(4):G636–42.PubMedGoogle Scholar
  41. 41.
    Kunnimalaiyaan M, Yan S, Wong F et al. Hairy Enhancer of Split-1 (HES-1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery 2005; 138(6):1137–42; discussion 42.CrossRefPubMedGoogle Scholar
  42. 42.
    Lal A, Chen H. Treatment of advanced carcinoid tumors. Curr Opin Onco12006; 18(1):9–15.Google Scholar
  43. 43.
    Nakakura EK, Sriuranpong VR, Kunnimalaiyaan M et al. Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. J Clin Endocrinol Metab 2005; 90(7):4350–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Sippel RS, Carpenter JE, Kunnimalaiyaan M et al. The role of human achaete-scute homolog-1 in medullary thyroid cancer cells. Surgery 2003; 134(6):866–71; discussion 71-3.CrossRefPubMedGoogle Scholar
  45. 45.
    Sippel RS, Carpenter JE, Kunnimalaiyaan M et al. Raf-1 activation suppresses neuroendocrine marker and hormone levels in human gastrointestinal carcinoid cells. Am J Physiol Gastrointesr Liver Physiol 2003; 285(2):G245–54.Google Scholar
  46. 46.
    Sippel RS, Chen H. Carcinoid tumors. Surg Oncol Clin N Am 2006; 15(3):463–78.CrossRefPubMedGoogle Scholar
  47. 47.
    Van Gompel JJ, Sippel RS, Warner TF et al. Gastrointestinal carcinoid tumors: factors that predict outcome. World J Surg 2004; 28(4):387–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Borges M, Linnoila RI, van de Velde HJ et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 1997; 386(6627):852–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Lanigan TM, DeRaad SK, Russo AF. Requirement of the MASH-1 transcription factor for neuroendocrine differentiation of thyroid C cells. J Neurobiol 1998; 34(2):126–34.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen H, Biel MA, Borges MW et al. Tissue-specific expression of human achaete-scute homologue-1 in neuroendocrine tumors: transcriptional regulation by dual inhibitory regions. Cell Growth Differ 1997; 8(6):677–86.PubMedGoogle Scholar
  51. 51.
    Chen H, Thiagalingam A, Chopra H et al. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly repressesachaete-scute homolog-1 expression. Proc Natl Acad Sci USA 1997; 94(10):5355–60.CrossRefPubMedGoogle Scholar
  52. 52.
    Chen H, Udelsman R, Zeiger MA et al. Human achaete-scutehomolog-1 is highly expressed in a subset of neuroendocrine tumors. Oncology Reports 1997; 4:775–8.Google Scholar
  53. 53.
    Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA et al. Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem 2006; 281(52):39819–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Sriuranpong V, Borges MW, Ravi RK et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61(7):3200–5.PubMedGoogle Scholar
  55. 55.
    Greenblatt DY, Vaccaro AM, Jaskula-Sztul R et al. Valproic acid activates notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist 2007; 12(8):942–51.CrossRefPubMedGoogle Scholar
  56. 56.
    Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA et al. Inactivation of glycogen synthase kinase-3β, a downstream target of the raf-1 pathway, is associated with growth suppression in medullary thyroid cancer cells. Mol Cancer Ther 2007; 6(3):1151–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen H, Carson-Walter EB, Baylin SB et al. Differentiation of medullary thyroid cancer by C-Raf-1 silences expression of the neural transcription factor human achaete-scute homolog-1. Surgery 1996; 120(2):168–72; discussion 73.CrossRefPubMedGoogle Scholar
  58. 58.
    Park JI, Strock CJ, Ball DW et al. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/ JAK/STAT pathway. Mol Cell Biol 2003; 23(2):543–54.CrossRefPubMedGoogle Scholar
  59. 59.
    Schussheim DH, Skarulis MC, Agarwal SK et al. Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends in Endocrinology and Metabolism 2001; 12:173–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Mutch MG, Dilley WG, Sanjurjo F et al. Germline mutations in the multiple endocrine neoplasia type 1 gene: Evidence for frequent splicing defects. Human Mutation 1999; 13:175–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Kassem M, Kruse TA, Wong FK et al. Familial isolated hyperparathyroidism as a variant of multiple endocrine neoplasia type 1 in a large Danish pedigree. Journal of Clinical Endocrinology and Metabolism 2000; 85:165–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Olufemi SE, Green JS, Manickam P et al. Common ancestral mutation in the MEN1 gene is likely responsible for the prolactinoma variant of MEN1 (MEN1 Burin) in four kindreds from Newfoundland. Human Mutation 1998; 11:264–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Kouvaraki MA, Shapiro SE, Cote GJ et al. Management of pancreatic endocrine tumors in multiple endocrine neoplasia type 1. World J Surg 2006; 30(5):643–53.CrossRefPubMedGoogle Scholar
  64. 64.
    Lowney JK, Frisella MM, Lairmore TC et al. Pancreatic islet cell tumor metastasis in multiple endocrine neoplasia type 1: Correlation with primary tumor size. Surgery 1998; 124:1043–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Akerstrom G, Hessman O, Skogseid B. Timing and extent of surgery in symptomatic and asymptomatic neuroendocrine tumors of the pancreas in MEN1. Langenbecks Arch Surg 2002; 386(8):558–69.CrossRefPubMedGoogle Scholar
  66. 66.
    Skogseid B, Eriksson B, Lundqvist G et al. Multiple endocrine neoplasia type 1: A 10-year prospective screening study in four kindreds. Journal of Clinical Endocrinology and Metabolism 1991; 73:281–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Skogseid B, Oberg K, Eriksson B et al. Surgery for asymptomatic pancreatic lesion in multiple endocrine neoplasia type I. World J Surg 1996; 20(7):872–6; discussion 7.CrossRefPubMedGoogle Scholar
  68. 68.
    Lairmore TC, Chen VY, DeBenedetti MK et al. Duodenopancreatic resections in patients with multiple endocrine neoplasia type 1. Annals of Surgery 2000; 231:909–18.CrossRefPubMedGoogle Scholar
  69. 69.
    Thompson NW. Current concepts in the surgical management of multiple endocrine neoplasia type 1 pancreatic-duodenal disease. Results in the treatment of 40 patients with Zollinger-Ellison syndrome, hypoglycaemia or both. Journal of Internal Medicine 1998; 243:495–500.CrossRefPubMedGoogle Scholar
  70. 70.
    Bartsch DK, Fendrich V, Langer P et al. Outcome of duodenopancreatic resections in patients with multiple endocrine neoplasia type 1. Ann Surg 2005; 242(6):757–64, discussion 64-6.CrossRefPubMedGoogle Scholar
  71. 71.
    Thompson NW. Management of pancreatic endocrine tumors in patients with multiple endocrine neoplasia type 1. Surg Oncol Clin N Am 1998; 7(4):881–91.PubMedGoogle Scholar
  72. 72.
    Tonelli F, Fratini G, Nesi G et al. Pancreatectomy in multiple endocrine neoplasia type 1-related gastrinomas and pancreatic endocrine neoplasias. Ann Surg 2006; 244(1):61–70.CrossRefPubMedGoogle Scholar
  73. 73.
    Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000; 351:289–305.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Terry C. Lairmore
    • 1
  • Herbert Chen
    • 2
  1. 1.Department of Surgery Division of Surgical Oncology, Scott and White Memorial Hospital ClinicTexas A&M University System Health Sciences Center College of MedicineTempleUSA
  2. 2.Section of Endocrine Surgery Department of SurgeryThe University ofWisconsin University of Wisconsin Comprehensive Cancer CenterMadisonUSA

Personalised recommendations