Microprocessor Design Using 3D Integration Technology

  • Yuan Xie
Chapter

Abstract

Previous chapters have described various aspects of 3D integration technology, including the fundamentals of process technology and EDA design flows for 3D IC design. In this chapter, we discuss how to leverage the emerging 3D integration technology for future microprocessor design.

Keywords

Expense 

Notes

Acknowledgements

Much of the work and ideas presented on this chapter have evolved over several years in work with our colleagues and graduate students at Penn State, in particular Professor Vijaykrishnan Narayanan, Professor Mary Jane Irwin, Yuh-Fang Tsai, Wei-lun Hung, and Xiangyu Dong.

References

  1. 1.
    Bernstein K (2006) Introduction to 3D integration. In: Tutorials in international solid state circuits conference (ISSCC)Google Scholar
  2. 2.
    Black B, Annavaram M, Brekelbaum N, DeVale J, Jiang L, Loh GH, McCauley D, Morrow P, Nelson DW, Pantuso D, Reed P, Rupley J, Shankar S, Shen J, Webb C (2006) Die stacking 3D microarchitecture. In: MICRO, pp 469–479 AU:Please check whether the inserted author names are appropriate in the references “[2, 11, 33, 38].Google Scholar
  3. 3.
    Borkar S (2008) 3D Technology: A System Perspective. In: Technical digest of the international 3D system integration conferenceGoogle Scholar
  4. 4.
    Carloni L, Pande P, Xie Y (2009) Networks-on-chip in emerging intercoonect paradigms: Advantages and challenges. In: International symposium on networks-on-chips, pp 93–102Google Scholar
  5. 5.
    Chen KN, Fan A, Tan CS, Reif R (2004) Contact resistance measurement of bonded copper interconnects for three-dimensional integration technology. IEEE Electron Device Lett, 25(1):10–12CrossRefGoogle Scholar
  6. 6.
    Davis WR, Wilson J, Mick S, Xu J, Hua H, Mineo C, Sule AM, Steer M, Franzon PD (2005) Demystifying 3D ICs: The pros and cons of going vertical. IEEE Des Test Comput, 22(6):498–510CrossRefGoogle Scholar
  7. 7.
    Dong X, Wu X, Sun G, Xie Y, Li H, Chen Y (2008) Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In: DAC ’08: Proceedings of the 45th annual design automation conference, pp 554–559, ACM, New York, NY, USA AQ:The reference [7] is repeated twice in the reference list and so it is deleted. Please check.Google Scholar
  8. 8.
    Dongkook P, Eachempati S, Das R, Mishra AK, Xie Y, Vijaykrishnan N, Das CR (2008) MIRA: A multi-layered on-chip interconnect router architecture. In: International symposium on computer architecture (ISCA), pp 251–261Google Scholar
  9. 9.
    Egawa R, Tada J, Kobayashi H, Goto G (2009) Evaluation of fine grain 3D integrated ­arithmetic units. In: IEEE International 3D system integration conference, pp 1–8Google Scholar
  10. 10.
    Garrou P (2008) Introduction to 3D integration. In: Handbook of 3D integration: technology and applications using 3D integrated circuits, Wiley, LondonGoogle Scholar
  11. 11.
    Jacob P, Zia A, Chu M, Kim JW, Kraft R, McDonald JF, Bernstein K(2008) Mitigating memory wall effects in high clock rate and multi-core CMOS 3D ICs: Processor memory stacks. Proceedings of IEEE, 96(10)Google Scholar
  12. 12.
    Joyner J, Zarkesh-Ha P, Meindl J (2001) A stochastic global net-length distribution for a three-dimensional system-on-a-chip (3D-SoC). In: Proceedings of the 14th annual IEEE international ASIC/SOC conference, pp 147–151Google Scholar
  13. 13.
    Kang YH, Jung SM, Jang JH, Moon JH, Cho WS, Yeo CD, Kwak KH, Choi BH, Hwang BJ, Jung WR, Kim SJ, Kim JH, Na JH, Lim H, Jeong JH, Kim K (2004) Fabrication and characteristics of novel load PMOS SSTFT ( stacked single-crystal thin film transistor) for 3-dimentional SRAM memory cell. In: Proceedings of IEEE international SOI conference, pp 127–129Google Scholar
  14. 14.
    Kgil T, D’Souza S, Saidi A, Binkert N, Dreslinski R, Mudge T, Reinhardt S, Flautner K (2006) PicoServer: using 3D stacking technology to enable a compact energy efficient chip multiprocessor. In: ASPLOS, pp 117–128Google Scholar
  15. 15.
    Kim J, Nicopoulos C, Park D, Das R, Xie Y, Vijaykrishnan N, Das C (2007) A novel dimensionally-decomposed router for on-chip communication in 3D architectures. In: Proceedings of the annual international symposium on computer architecture ACM SIGARCH Comput Archit News, 35(2):138–149CrossRefGoogle Scholar
  16. 16.
    Lee KW, Nakamura T, Ono T, Yamada Y, Mizukusa T, Hashimoto H, Park KT, Kurino H, Koyanagi M (2000) Three-dimensional shared memory fabricated using wafer stacking technology. In: Technical digest of the international electron devices meeting, pp 228–229Google Scholar
  17. 17.
    Li F, Nicopoulos C, Richardson T, Xie Y, Vijaykrishnan N, Kandemir M (2006) Design and management of 3D chip multiprocessors using network-in-memory. In: International symposium on computer architecture (ISCA’06) ACM SIGARCH Comput Archit News, 34(2):130–141Google Scholar
  18. 18.
    Loh GH (2008) 3D-stacked memory architectures for multi-core processors. In: International symposium on computer architecture (ISCA), pp 453–464Google Scholar
  19. 19.
    Loh GH (2009) Extending the effectiveness of 3D-stacked dram caches with an adaptive multi-queue policy. In: International symposium on microarchitecture (MICRO), pp 201–212Google Scholar
  20. 20.
    Loh GH, Xie Y, Black B (2007) Processor design in 3D die-stacking technologies. IEEE Micro, 27(3):31–48 AQ:The reference [20] is repeated twice in the reference list and so it is deleted. Please check.Google Scholar
  21. 21.
    Mayega J, Erdogan O, Belemjian PM, Zhou K, McDonald JF, Kraft RP (2003) 3D direct vertical interconnect microprocessors test vehicle. In: Proceedings of the 13th ACM great lakes symposium on VLSI (GLSVLSI), pp 141–146Google Scholar
  22. 22.
    Ouyang J, Sun G, Chen Y, Duan L, Zhang T, Xie Y, Irwin M (2009) Arithmetic unit design using 180nm TSV-based 3D stacking technology. IEEE International 3D system integration conference, pp 1–4Google Scholar
  23. 23.
    Palacharla S, Jouppi NP, Smith JE (1997) Complexity-effective superscalar processors. ACM SIGARCH Comput Archit News, 25(2):206–218CrossRefGoogle Scholar
  24. 24.
    Puttaswamy K, Loh GH (2005) Implementing caches in a 3D technology for high performance processors. In: ICCD ’05: Proceedings of the 2005 international conference on computer design, pp 525–532, IEEE Computer Society, Washington, DC, USACrossRefGoogle Scholar
  25. 25.
    Puttaswamy K, Loh GH (2007) Scalability of 3D-integrated arithmetic units in high-performance microprocessors. In: Design automation conference, pp 622–625Google Scholar
  26. 26.
    Stackhouse B, Bhimji S, Bostak C, Bradley D, Cherkauer B, Desai J, Francom E, Gowan M, Gronowski P, Krueger D, Morganti C, Troyer S (2009) A 65nm 2-billion transistor quad-core itanium processor. IEEE J Solid-State Circuits, 44(1):18–31CrossRefGoogle Scholar
  27. 27.
    Sun G, Dong X, Xie Y, Li J, Chen Y (2009) A novel 3D stacked MRAM cache architecture for CMPs. In: International symposium on high performance computer architecture, pp 239–249Google Scholar
  28. 28.
    Tremblay M, Chaudhry S (2008) A third-generation 65nm 16-core 32-thread plus 32-scout-thread CMT SPARC processor. In: IEEE International solid-state circuits conference, pp 82–83Google Scholar
  29. 29.
    Tsai Y-F, Wang F, Xie Y, Vijaykrishnan N, Irwin MJ (2008) Design space exploration for threedimensional cache. IEEE TVLSI, 16(4):444–455Google Scholar
  30. 30.
    Tsai Y-F, Xie Y, Narayanan V, Irwin MJ (2005) Three-dimensional cache design exploration using 3DCacti. In: IEEE International conference on computer design, pp 519–524Google Scholar
  31. 31.
    Vaidyanathan B, Hung W-L, Wang F, Xie Y, Narayanan V, Irwin MJ (2007) Architecting microprocessor components in 3D design space. In: VLSI design, pp 103–108 AQ:The reference [31] is repeated twice in the reference list and so it is deleted. Please check.Google Scholar
  32. 32.
    Vangal S, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D, Iyer P, Singh A, Jacob T, Jain S, Venkataraman S, Hoskote Y, Borkar N (2007) An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS. pp 98–589Google Scholar
  33. 33.
    Vangal SR, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D, Singh A, Jacob T, Jain S, Erraguntla V, Roberts C, Hoskote Y, Borkar N, Borkar S (2008) An 80-tile Sub-100-W TeraFLOPS processor in 65-nm CMOS. IEEE J Solid-State Circuits, 43(1):29–41CrossRefGoogle Scholar
  34. 34.
    Vantrease D, Schreiber R, Monchiero M, McLaren M, Jouppi NP, Fiorentino M, Davis A, Binkert N, Beausoleil RG, Ahn JH (2008) Corona: System implications of emerging nanophotonic technology. In: Proceedings of the 35th international symposium on computer architecture, pp 153–164Google Scholar
  35. 35.
    Wu X, Li J, Zhang L, Speight E, Xie Y (2009) Hybrid cache architecture. In: International symposium on computer architecture (ISCA)Google Scholar
  36. 36.
    Xie Y, Cong J, Sapatnekar S (2009) Three-dimensional integrated circuit design: EDA, design and microarchitectures. Springer, New YorkGoogle Scholar
  37. 37.
    Xie Y, Loh G, Black B, Bernstein K (2006) Design space exploration for 3D architectures. ACM J Emerg Technol Comput Syst, 2(2):65–103CrossRefGoogle Scholar
  38. 38.
    Xu Y, Du Y, Zhao B, Zhou X, Zhang Y, Yang J(2009) A low-radix and low-diameter 3D interconnection network design. In: International symposium on high performance computer architecture, pp 30–42Google Scholar
  39. 39.
    Zhang K, Bhattacharya U, Chen Z, Hamzaoglu F, Murray D, Vallepalli N, Wang BZY, Bohr M (2004) A SRAM design on 65nm CMOS technology with integrated leakage reduction scheme. In: VLSI technology digest of technical papers, pp 294–295Google Scholar
  40. 40.
    Dong X, Xie Y (2009) System-level cost analysis and design exploration for 3D ICs. In: Asia and South Pacific design automation conference, pp 234–241Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yuan Xie
    • 1
  1. 1.Department of Computer Science and EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations