Skip to main content

Advances in Data-driven Optimization of Parametric and Non-parametric Feedforward Control Designs with Industrial Applications

  • Chapter
  • First Online:
Model-Based Control:

Abstract

The performance of many industrial control systems is determined to a large extent by the quality of both setpoint and disturbance feedforward signals. The quality that is required for a high tracking performance is generally not achieved when the controller parameters are determined on the basis of a detailed model of the plant dynamics or manual tuning. This chapter shows that the optimization of the controller parameters by iterative trials, i.e., data-driven, in both parametric and non-parametric feedforward control structures avoids the need for a detailed model of the plant dynamics, achieves optimal controller parameter values, and allows for the adaptation to possible variations in the plant dynamics. Two industrial applications highlight the large benefits of the data-driven optimization approach. The optimization of the feedforward controller parameters in a wafer scanner application leads to extremely short settling times and higher productivity. The optimization of the current amplifier setpoints in a digital light projection (DLP) application leads to nearly constant color rendering performances of the projection system in spite of large changes in the lamp dynamics over its life span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arimoto, S.: Mathematical theory of learning with applications to robot control. In: K.S. Narendra (ed.) Adaptive and Learning Systems: Theory and Applications, pp. 379–388. Plenum Press, New York (1986)

    Google Scholar 

  2. Bien, Z., Xu, J.X.: Iterative Learning Control – Analysis, Design, Integration, and Applications. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  3. Boerlage, M., Steinbuch, M., Lambrechts, P., Van de Wal, M.: Model-Based Feedforward for Motion Systems. In: Proceedings of the 2003 IEEE Conference on Control Applications, vol. 2, pp. 1158–1163. Istanbul, Turkey (2003)

    Google Scholar 

  4. Boerlage, M., Tousain, R., Steinbuch, M.: Jerk Derivative Feedforward Control for Motion Systems. In: Proceedings of the 2004 American Control Conference, vol. 5, pp. 4843–4848. Boston, Massachusetts (2004)

    Google Scholar 

  5. Bristow, D.A., Tharayil, M., Alleyne, A.G.: A Survey of Iterative Learning Control – A Learning-Based Method for High-Performance Tracking Control. IEEE Control Systems Magazine 26(3), 96–114 (2006)

    Article  Google Scholar 

  6. De Roover, D.: Motion Control of a Wafer Stage: A Design Approach for Speeding Up IC Production. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands (1997)

    Google Scholar 

  7. Dennis Jr., J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. No. 16 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania (1996)

    Google Scholar 

  8. Devasia, S.: Should Model-Based Inverse Inputs be Used as Feedforward Under Plant Uncertainty. IEEE Transactions on Automatic Control 47(11), 1865–1871 (2002)

    Article  MathSciNet  Google Scholar 

  9. Dijkstra, B.G.: Iterative Learning Control, With Applicatins to a Wafer-Stage. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands (2004)

    Google Scholar 

  10. Frueh, J.A., Phan, M.Q.: Linear Quadratic Optical Learning Control (LQL). Journal of Control 73(10), 832–839 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ghosh, J., Paden, B.: A pseudoinverse-based iterative learning control. IEEE Transcations on Automatic Control 47(5), 831–837 (2002)

    Article  MathSciNet  Google Scholar 

  12. Hägglund, T., Åström, K.J.: Industrial Adaptive Controllers Based on Frequency Response Techniques. Automatica 27(4), 599–609 (1991)

    Article  Google Scholar 

  13. Hunt, L.R., Meyer, G., Su, R.: Noncausal Inverses for Linear Systems. IEEE Transcations on Automatic Control 41(4), 608–611 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kailath, T.: Linear Systems. Prentice-Hall Information and System Sciences Series. Prentice-Hall, Englewood Cliffs, New Jersey (1980)

    MATH  Google Scholar 

  15. Lambrechts, P., Boerlage, M., Steinbuch, M.: Trajectory Planning and Feedforward Design for Electromechanical Motion Systems. Control Engineering Practice 13(2), 145–157 (2005)

    Article  Google Scholar 

  16. Longman, R.W.: Iterative Learning Control and Repetitive Control for Engineering Practice. International Journal of Control 73(10), 930–954 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Van der Meulen, S.H., Tousain, R.L., Bosgra, O.H.: Fixed Strucutre Feedforward Controller Design Exploiting Iterative Trials: Application to a Wafer Stage and a Desktop Printer. Journal of Dynamic Systems, Measurement, and Control 130(051006) (2008)

    Google Scholar 

  18. Moore, K.L.: Iterative learning Control: An expository overview. In: B.N. Datta (ed.) Applied and Computational Control, Signals, and Circuits, vol. 1, chapter 4, pp. 151–214. Birkhäuser, Boston (1999)

    Google Scholar 

  19. Nash, S.G., Sofer, A.: Linear and Nonlinear Programming. McGraw-Hill Series in Industrial Engineering and Management Science. McGraw-Hill, London (1996)

    Google Scholar 

  20. Phan, M., Longman, R.W.: A Mathematical Theory of Learning Control for Linear Discrete Multivariable Sustems. In: Proceedings of the AIAA/AAS Astrodynamics Conference, pp. 740–746. Minneapolis, Minnesota (1988)

    Google Scholar 

  21. Steinbuch, M., Norg, M.L.: Advanced Motion Control: An Industrial Perspective. European Journal of Control 4(4), 278–293 (1998)

    MATH  Google Scholar 

  22. Stix, G.: Trends in Semiconductor Manufacturing: Toward “Point One”. Scientific American 272(2), 72–77 (1995)

    Google Scholar 

  23. Tomizuka, M.: Zero Phase Error Tracking Algorithm for Digital Control. Journal of Dynamic Systems, Measurement, and Control 109(1), 65–68 (1987)

    Article  MATH  Google Scholar 

  24. Torfs, D.E., Vuerinckx, R., Swevers, J., Schoukens, J.: Comparison of Two Feedforward Design Methods Aiming at Accurate Trajectory Tracking of the End Point of a Flexible Robot Arm. IEEE Transactins on Control Systems Technology 6(1), 2–14 (1998)

    Article  Google Scholar 

  25. Tousain, R., Van der Meché, E., Bosgra, O.: Design Strategy for Iterative Learning Control Based on Optimal Control. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 5, pp. 4463–4468. Orlando, Florida (2001)

    Google Scholar 

  26. Tousain, R., Van Casteren, D.: Iterative Learning Control in a Mass Product: Light on Demand in DLP projection systems. In: Proceedings of the 2007 American Control Conference, pp. 5478–5483. New York City, New York (2007)

    Chapter  Google Scholar 

  27. Tsao, T.C., Tomizuka, M.: Robust Adaptive and Repetitive Digital Tracking Control and Application to a Hydraulic Servo for Nancircular Machining. Journal of Dynamic Systems, Measurement, and Control 116(1), 24–32 (1994)

    Article  MATH  Google Scholar 

  28. Van de Wal, M., Van Baars, G., Sperling, F., Bosgra, O.: Multivaribale H ∞/ μ Feedback Control Degign for High-Precision Wafer Stage Motion. Control Engineering Practive 10(7), 739–755 (2002)

    Article  Google Scholar 

  29. Zhao, S., Tan, K.K.: Adaptive Feedforward Compensation of Force Ripples in Linear Motors. Control Engineering Practice 13(9), 1081–1091 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Tousain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tousain, R., van der Meulen, S. (2009). Advances in Data-driven Optimization of Parametric and Non-parametric Feedforward Control Designs with Industrial Applications. In: Hof, P., Scherer, C., Heuberger, P. (eds) Model-Based Control:. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0895-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0895-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0894-0

  • Online ISBN: 978-1-4419-0895-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics