Skip to main content

Toxicological Consequences of Drug–Drug Interactions

  • Chapter
  • First Online:
Enzyme- and Transporter-Based Drug-Drug Interactions

Abstract

Adverse drug reactions (ADRs) represent one of the major clinical challenges to patient’s health and are a key reason for attrition in drug development. An understanding of how drug–drug interactions (DDIs) can influence and cause ADRs is critical in managing patients using several prescriptions at the same time. Whilst it may be possible to control on-target ADRs that occur from DDIs, due to predictable pharmacokinetic and pharmacodynamic interactions, the impact of DDIs in triggering off-target ADRs still remains difficult to understand. This chapter will examine clinical, in vivo and in vitro examples to look at how DDIs can potentially lead to both on- and off-target ADRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Askgaard DS, Wilcke T and Dossing M (1995) Hepatotoxicity caused by the combined action of isoniazid and rifampicin. Thorax 50:213–214.

    Article  CAS  PubMed  Google Scholar 

  • Baciewicz AM, Menke JJ, Bokar JA and Baud EB (1994) Fluconazole-warfarin interaction. Ann Pharmacother 28:1111.

    CAS  PubMed  Google Scholar 

  • Breckenridge A, Orme M, Wesseling H, Lewis RJ and Gibbons R (1974) Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin Pharmacol Ther 15:424–430.

    CAS  PubMed  Google Scholar 

  • Carmo H, Brulport M, Hermes M, Oesch F, Silva R, Ferreira LM, Branco PS, Boer D, Remiao F, Carvalho F, Schon MR, Krebsfaenger N, Doehmer J, Bastos ML and Hengstler JG (2006) Influence of CYP2D6 polymorphism on 3,4-methylenedioxymethamphetamine ('Ecstasy') cytotoxicity. Pharmacogenet Genom 16:789–799.

    Article  CAS  Google Scholar 

  • Chen J, Mannargudi BM, Xu L and Uetrecht J (2008) Demonstration of the metabolic pathway responsible for nevirapine-induced skin rash. Chem Res Toxicol 21:1862–1870.

    Article  CAS  PubMed  Google Scholar 

  • Choonara IA, Malia RG, Haynes BP, Hay CR, Cholerton S, Breckenridge AM, Preston FE and Park BK (1988) The relationship between inhibition of vitamin K1 2,3-epoxide reductase and reduction of clotting factor activity with warfarin. Br J Clin Pharmacol 25:1–7.

    CAS  PubMed  Google Scholar 

  • Claes P, Wintzen M, Allard S, Simons P, De CA and Lacor P (2004) Nevirapine-induced toxic epidermal necrolysis and toxic hepatitis treated successfully with a combination of intravenous immunoglobulins and N-acetylcysteine. Eur J Intern Med 15:255–258.

    Article  PubMed  Google Scholar 

  • Crippin JS (1993) Acetaminophen hepatotoxicity: potentiation by isoniazid. Am J Gastroenterol 88:590–592.

    CAS  PubMed  Google Scholar 

  • De Rosa SC, Zaretsky MD, Dubs JG, Roederer M, Anderson M, Green A, Mitra D, Watanabe N, Nakamura H, Tjioe I, Deresinski SC, Moore WA, Ela SW, Parks D, Herzenberg LA and Herzenberg LA (2000) N-acetylcysteine replenishes glutathione in HIV infection. Eur J Clin Invest 30:915–929.

    Article  PubMed  Google Scholar 

  • Diana FJ, Veronich K and Kapoor AL (1989) Binding of nonsteroidal anti-inflammatory agents and their effect on binding of racemic warfarin and its enantiomers to human serum albumin. J Pharm Sci 78:195–199.

    Article  CAS  PubMed  Google Scholar 

  • Fischer V, Haar JA, Greiner L, Lloyd RV and Mason RP (1991) Possible role of free radical formation in clozapine (clozaril)-induced agranulocytosis. Mol Pharmacol 40:846–853.

    CAS  PubMed  Google Scholar 

  • Gangadharam PR (1986) Isoniazid, rifampin, and hepatotoxicity. Am Rev Respir Dis 133:963–965.

    CAS  PubMed  Google Scholar 

  • Gemma S, Vichi S and Testai E (2006) Individual susceptibility and alcohol effects:biochemical and genetic aspects. Ann Ist Super Sanita 42:8–16.

    CAS  PubMed  Google Scholar 

  • Gemma S, Vichi S and Testai E (2007) Metabolic and genetic factors contributing to alcohol induced effects and fetal alcohol syndrome. Neurosci Biobehav Rev 31:221–229.

    Article  CAS  PubMed  Google Scholar 

  • Girling DJ (1978) The hepatic toxicity of antituberculosis regimens containing isoniazid, rifampicin and pyrazinamide. Tubercle 59:13–32.

    Article  CAS  PubMed  Google Scholar 

  • Green AE, Hort JF, Korn HE and Leach H (1977) Potentiation of warfarin by azapropazone. Br Med J 1:1532.

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O‘Shea E and Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). Pharmacol Rev 55:463–508.

    Article  CAS  PubMed  Google Scholar 

  • Hanley JP (2004) Warfarin reversal. J Clin Pathol 57:1132–1139.

    Article  CAS  PubMed  Google Scholar 

  • Hindmarch I and Bhatti JZ (1987) Psychomotor effects of astemizole and chlorpheniramine, alone and in combination with alcohol. Int Clin Psychopharmacol 2:117–119.

    Article  CAS  PubMed  Google Scholar 

  • Huang SC and Tsai SJ (1995) Hyponatremia and Stevens-Johnson syndrome in a patient receiving carbamazepine. Gen Hosp Psychiatry 17:458–460.

    Article  CAS  PubMed  Google Scholar 

  • Isalska BJ and Stanbridge TN (1988) Fluconazole in the treatment of candidal prosthetic valve endocarditis. BMJ 297:178–179.

    Article  CAS  PubMed  Google Scholar 

  • Jasmer RM, Saukkonen JJ, Blumberg HM, Daley CL, Bernardo J, Vittinghoff E, King MD, Kawamura LM and Hopewell PC (2002) Short-course rifampin and pyrazinamide compared with isoniazid for latent tuberculosis infection: a multicenter clinical trial. Ann Intern Med 137:640–647.

    CAS  PubMed  Google Scholar 

  • Ju C and Uetrecht JP (1999) Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate. J Pharmacol Exp Ther 288:51–56.

    CAS  PubMed  Google Scholar 

  • Kaminsky LS and Zhang ZY (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73:67–74.

    Article  CAS  PubMed  Google Scholar 

  • Kao J and Carver MP (1990) Cutaneous metabolism of xenobiotics. Drug Metab Rev 22:363–410.

    Article  CAS  PubMed  Google Scholar 

  • Kaplowitz N (2001) Drug-induced liver disorders: implications for drug development and regulation. Drug Saf 24:483–490.

    Article  CAS  PubMed  Google Scholar 

  • Kerr HD (1993) Case report: potentiation of warfarin by fluconazole. Am J Med Sci 305:164–165.

    Article  CAS  PubMed  Google Scholar 

  • Klotz U and Ammon E (1998) Clinical and toxicological consequences of the inductive potential of ethanol. Eur J Clin Pharmacol 54:7–12.

    Article  CAS  PubMed  Google Scholar 

  • Kola I and Landis J (2004) Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov 3:711–715.

    Article  CAS  PubMed  Google Scholar 

  • Kunze KL, Wienkers LC, Thummel KE and Trager WF (1996) Warfarin-fluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 24:414–421.

    CAS  PubMed  Google Scholar 

  • Lazarou J, Pomeranz BH and Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. J Am Med Assoc 279:1200–1205.

    Article  CAS  Google Scholar 

  • Lee AM, Mennone JZ, Jones RC and Paul WS (2002) Risk factors for hepatotoxicity associated with rifampin and pyrazinamide for the treatment of latent tuberculosis infection: experience from three public health tuberculosis clinics. Int J Tuberc Lung Dis 6:995–1000.

    CAS  PubMed  Google Scholar 

  • Lee WM (2003) Acute liver failure in the United States. Semin Liver Dis 23:217–226.

    Article  CAS  PubMed  Google Scholar 

  • Leeder JS (1998) Mechanisms of idiosyncratic hypersensitivity reactions to antiepileptic drugs. Epilepsia 39 Suppl 7:S8–S16.

    Article  CAS  PubMed  Google Scholar 

  • Madden S, Maggs JL and Park BK (1996) Bioactivation of carbamazepine in the rat in vivo. Evidence for the formation of reactive arene oxide(s). Drug Metab Dispos 24:469–479.

    CAS  PubMed  Google Scholar 

  • Maffei FR and Carini M (1980) The inhibitory effect of pyrazinamide on microsomal monooxygenase activities is related to the binding to reduced cytochrome P-450. Pharmacol Res Commun 12:523–537.

    Article  Google Scholar 

  • Mason RP and Fischer V (1992) Possible role of free radical formation in drug-induced agranulocytosis. Drug Saf 7 Suppl 1:45–50.

    Article  CAS  PubMed  Google Scholar 

  • May AE, Geisler T and Gawaz M (2008) Individualized antithrombotic therapy in high risk patients after coronary stenting. A double-edged sword between thrombosis and bleeding. Thromb Haemost 99:487–493.

    CAS  PubMed  Google Scholar 

  • McNeill L, Allen M, Estrada C and Cook P (2003) Pyrazinamide and rifampin vs isoniazid for the treatment of latent tuberculosis: improved completion rates but more hepatotoxicity. Chest 123:102–106.

    Article  CAS  PubMed  Google Scholar 

  • Menzies D, Long R, Trajman A, Dion MJ, Yang J, Al JH, Memish Z, Khan K, Gardam M, Hoeppner V, Benedetti A and Schwartzman K (2008) Adverse events with 4 months of rifampin therapy or 9 months of isoniazid therapy for latent tuberculosis infection: a randomized trial. Ann Intern Med 149:689–697.

    PubMed  Google Scholar 

  • Mootha VV, Schluter ML and Das A (2002) Intraocular hemorrhages due to warfarin fluconazole drug interaction in a patient with presumed Candida endophthalmitis. Arch Ophthalmol 120:94–95.

    PubMed  Google Scholar 

  • Murphy R, Swartz R and Watkins PB (1990) Severe acetaminophen toxicity in a patient receiving isoniazid. Ann Intern Med 113:799–800.

    CAS  PubMed  Google Scholar 

  • Nelson SD and Gordon WP (1981) Metabolic activation of hydrazines. Adv Exp Med Biol 136 Pt B:971–981.

    PubMed  Google Scholar 

  • Nicod L, Viollon C, Regnier A, Jacqueson A and Richert L (1997) Rifampicin and isoniazid increase acetaminophen and isoniazid cytotoxicity in human HepG2 hepatoma cells. Hum Exp Toxicol 16:28–34.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Kurata N, Sakurai E and Yasuhara H (2004) Inhibitory effect of antituberculosis drugs on human cytochrome P450-mediated activities. J Pharmacol Sci 96:293–300.

    Article  CAS  PubMed  Google Scholar 

  • Ostapowicz G, Fontana RJ, Schiodt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J and Lee WM (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137:947–954.

    PubMed  Google Scholar 

  • Otis JS, Ashikhmin YI, Brown LA and Guidot DM (2008) Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats. AIDS Res Ther 5:8.

    Article  PubMed  Google Scholar 

  • Park BK, Kitteringham NR, Maggs JL, Pirmohamed M and Williams DP (2005) The role of metabolic activation in drug-induced hepatotoxicity. Annu Rev Pharmacol Toxicol 45:177–202.

    Article  CAS  PubMed  Google Scholar 

  • Park BK, Pirmohamed M and Kitteringham NR (1998) Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective. Chem Res Toxicol 11:969–988.

    Article  CAS  PubMed  Google Scholar 

  • Pelkonen O and Raunio H (1997) Metabolic activation of toxins: tissue-specific expression and metabolism in target organs. Environ Health Perspect 105 Suppl 4:767–774.

    Article  CAS  PubMed  Google Scholar 

  • Pessayre D, Bentata M, Degott C, Nouel O, Miguet JP, Rueff B and Benhamou JP (1977) Isoniazid-rifampin fulminant hepatitis. A possible consequence of the enhancement of isoniazid hepatotoxicity by enzyme induction. Gastroenterology 72:284–289.

    CAS  PubMed  Google Scholar 

  • Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK and Breckenridge AM (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329:15–19.

    Article  PubMed  Google Scholar 

  • Pontes H, Duarte JA, de Pinho PG, Soares ME, Fernandes E, nis-Oliveira RJ, Sousa C, Silva R, Carmo H, Casal S, Remiao F, Carvalho F and Bastos ML (2008) Chronic exposure to ethanol exacerbates MDMA-induced hyperthermia and exposes liver to severe MDMA-induced toxicity in CD1 mice. Toxicology 252:64–71.

    Article  CAS  PubMed  Google Scholar 

  • Popovic M, Caswell JL, Mannargudi B, Shenton JM and Uetrecht JP (2006) Study of the sequence of events involved in nevirapine-induced skin rash in Brown Norway rats. Chem Res Toxicol 19:1205–1214.

    Article  CAS  PubMed  Google Scholar 

  • Powell-Jackson PR (1977) Interaction between azapropazone and warfarin. Br Med J 1:1193–1194.

    Article  CAS  PubMed  Google Scholar 

  • Pozniak AL, Miller RF, Lipman MC, Freedman AR, Ormerod LP, Johnson MA, Collins S and Lucas SB (2005) BHIVA treatment guidelines for tuberculosis (TB)/HIV infection 2005. HIV Med 6 Suppl 2:62–83.

    Article  PubMed  Google Scholar 

  • Raucy JL, Lasker JM, Lieber CS and Black M (1989) Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys 271:270–283.

    Article  CAS  PubMed  Google Scholar 

  • Rolan PE (1994) Plasma protein binding displacement interactions – why are they still regarded as clinically important?. Br J Clin Pharmacol 37:125–128.

    CAS  PubMed  Google Scholar 

  • Ross D, Siegel D, Schattenberg DG, Sun XM and Moran JL (1996) Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: identification of target cells and a potential role for modulation of apoptosis in benzene toxicity. Environ Health Perspect 104 Suppl 6:1177–1182.

    Article  CAS  PubMed  Google Scholar 

  • Sathia L, Obiorah I, Taylor G, Kon O, O‘Donoghue M, Gibbins S, Walsh J and Winston A (2008) Concomitant use of nonnucleoside analogue reverse transcriptase inhibitors and rifampicin in TB/HIV type 1-coinfected patients. AIDS Res Hum Retroviruses 24:897–901.

    Article  CAS  PubMed  Google Scholar 

  • Seaton TL, Celum CL and Black DJ (1990) Possible potentiation of warfarin by fluconazole. DICP 24:1177–1178.

    CAS  PubMed  Google Scholar 

  • Seguin B, Teranishi M and Uetrecht JP (2003) Modulation of D-penicillamine-induced autoimmunity in the Brown Norway rat using pharmacological agents that interfere with arachidonic acid metabolism or synthesis of inducible nitric oxide synthase. Toxicology 190:267–278.

    Article  CAS  PubMed  Google Scholar 

  • Shaffer CL, Morton MD and Hanzlik RP (2001) N-dealkylation of an N-cyclopropylamine by horseradish peroxidase. Fate of the cyclopropyl group. J Am Chem Soc 123:8502–8508.

    Article  CAS  PubMed  Google Scholar 

  • Smith MT, Yager JW, Steinmetz KL and Eastmond DA (1989) Peroxidase-dependent metabolism of benzene’s phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect 82:23–29.

    Article  CAS  PubMed  Google Scholar 

  • Steele MA, Burk RF and DesPrez RM (1991) Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest 99:465–471.

    Article  Google Scholar 

  • Stehbens WE (2004) Oxidative stress in viral hepatitis and AIDS. Exp Mol Pathol 77:121–132.

    Article  CAS  PubMed  Google Scholar 

  • Stephenson I, Qualie M and Wiselka MJ (2001) Hepatic failure and encephalopathy attributed to an interaction between acetaminophen and rifampicin. Am J Gastroenterol 96:1310–1311.

    Article  CAS  PubMed  Google Scholar 

  • Temple RJ and Himmel MH (2002) Safety of newly approved drugs: implications for prescribing. J Am Med Assoc 287:2273–2275.

    Article  Google Scholar 

  • Uetrecht J (2006) Evaluation of which reactive metabolite, if any, is responsible for a specific idiosyncratic reaction. Drug Metab Rev 38:745–753.

    Article  CAS  PubMed  Google Scholar 

  • Uetrecht JP (1992) The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions. Drug Metab Rev 24:299–366.

    Article  CAS  PubMed  Google Scholar 

  • van HR, Baars H, Kik S, van GP, Trompenaars MC, Kalisvaart N, Keizer S, Borgdorff M, Mensen M and Cobelens F (2004) Hepatotoxicity of rifampin-pyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clin Infect Dis 39:488–496.

    Article  Google Scholar 

  • Win N, Mitchell DC, Jones PA and French EA (1991) Azapropazone and warfarin. BMJ 302:969–970.

    Article  CAS  PubMed  Google Scholar 

  • Wong KE (1990) Stevens-Johnson syndrome in neuroleptic-carbamazepine combination. Singapore Med J 31:432–433.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walsh, R.J., Srivastava, A., Antoine, D.J., Williams, D.P., Park, B.K. (2010). Toxicological Consequences of Drug–Drug Interactions. In: Pang , K., Rodrigues, A., Peter, R. (eds) Enzyme- and Transporter-Based Drug-Drug Interactions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0840-7_25

Download citation

Publish with us

Policies and ethics