Skip to main content

fMRI of the Central Auditory System

  • Chapter
  • First Online:
Functional Neuroradiology
  • 3799 Accesses

Abstract

Challenges for auditory fMRI include the intense scanner acoustic sound and the effects of the magnetic field on sound delivery equipment and on electronic hearing devices. Despite these difficulties, a number of neuroimaging studies in humans provide some evidence for plasticity in the central auditory system and are therefore informative in the clinical context. This chapter presents several of those major clinical applications of fMRI that investigate the processing of basic (i.e., nonlinguistic) sound features. Specifically, these include studies of the functional reorganization of the central auditory system as a consequence of adaptation to hearing loss and its remediation through amplification and the assessment of candidature for cochlear implantation. While the chapter illustrates opportunities for auditory fMRI to supplement the clinical decision-making process, it also highlights specific areas where there is a current lack of understanding. Recommendations for future clinical research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden P, Rosen BR, et al. Imaging subcortical auditory activity in humans. Hum Brain Mapp. 1998;6:33–41.

    Article  PubMed  CAS  Google Scholar 

  2. Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA. Lateralised tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol. 2000;83:1058–72.

    PubMed  CAS  Google Scholar 

  3. Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD. Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci. 2001;4:633–7.

    Article  PubMed  CAS  Google Scholar 

  4. Kaas JH, Hackett TA. Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol. 1998;3:73–85.

    Article  PubMed  CAS  Google Scholar 

  5. Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences. 2000;97:11793–11799.

    Google Scholar 

  6. Galaburda AM, Sanides F. Cytoarchitectonic organisation of the human auditory cortex. J Comp Neurol. 1980;221:169–84.

    Article  Google Scholar 

  7. Rivier F, Clarke S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage. 1997;6:288–304.

    Article  PubMed  CAS  Google Scholar 

  8. Wallace MN, Johnston PW, Palmer AR. Histochemical identification of cortical areas in the auditory region of the human brain. Exp Brain Res. 2002;143:499–508.

    Article  PubMed  CAS  Google Scholar 

  9. Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science. 1995;268:111–4.

    Article  PubMed  CAS  Google Scholar 

  10. Rauschecker JP, Tian B, Pons T, Mishkin M. Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol. 1997;382:89–103.

    Article  PubMed  CAS  Google Scholar 

  11. Merzenich MM, Brugge JF. Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res. 1973;50:275–96.

    Article  PubMed  CAS  Google Scholar 

  12. Morel A, Garraghty PE, Kaas JH. Tonotopic organisation, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol. 1993;335:437–59.

    Article  PubMed  CAS  Google Scholar 

  13. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage. 2001;13:684–701.

    Article  PubMed  CAS  Google Scholar 

  14. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron. 2003;40(4):859–69.

    Article  PubMed  CAS  Google Scholar 

  15. Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol. 2004;91:1282–96.

    Article  PubMed  Google Scholar 

  16. Paltoglou A, Sumner CJ, Hall DA. Examining the role of frequency specificity in the enhancement and suppression of human auditory cortical activity by auditory selective attention. Hear Res. 2009;257(1–2):106–18.

    Article  PubMed  Google Scholar 

  17. Recanzone GH. Spatial processing in the auditory cortex of the macaque monkey. Proceedings of the National Academy of Sciences. 2000;97:11829–11835.

    Google Scholar 

  18. Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Sciences. 2000;97:11800–11806.

    Google Scholar 

  19. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP. Functional specialisation in rhesus monkey auditory cortex. Science. 2001;292:290–3.

    Article  PubMed  CAS  Google Scholar 

  20. Morosan P, Schleicher A, Amunts K, Zilles K. Multimodal architectonic mapping of human superior temporal gyrus. J Anat Embryol. 2005;210:401–6.

    Article  CAS  Google Scholar 

  21. Obler R, Köstler H, Weber B-P, Mack KF, Becker B. Safe electrical stimulation of the cochlear nerve at the promontory during functional magnetic resonance imaging. Magn Reson Med. 1999;42:371–8.

    Article  PubMed  CAS  Google Scholar 

  22. Heller JW, Brackmann DE, Tucci DL, Nyenhuis JA, Chou C-K. Evaluation of MRI compatibility of the modified nucleus multichannel auditory brainstem and cochlear implants. Am J Otol. 1996;17:724–9.

    PubMed  CAS  Google Scholar 

  23. Weber BP, Neuberger J, Battmer RD, Lenarz T. Magnetless cochlear implant: relevance of adult experience for children. Am J Otol. 1997;18:S50–1.

    PubMed  CAS  Google Scholar 

  24. Chou CK, McDougall JA, Chan KW. Absence of radiofrequency heating from auditory implants during magnetic resonance imaging. Bioelectromagnetics. 1995;16:307–16.

    Article  PubMed  CAS  Google Scholar 

  25. Shellock FG, Morisoli S, Kanal E. MR procedures and biomedical implants, materials and devices: 1993 update. Radiology. 1993;189:587–99.

    PubMed  CAS  Google Scholar 

  26. Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW. Sound-level measurements and calculations of safe noise dosage during EPI at 3T. J Magn Reson Imaging. 2000;12:157–63.

    Article  PubMed  CAS  Google Scholar 

  27. Harms MP, Melcher JR. Sound repetition rate in the human auditory pathway: representations in the human auditory pathway – representations in the waveshape and amplitude of fMRI activation. J Neurophysiol. 2002;88(3):1433–50.

    PubMed  Google Scholar 

  28. Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RA, Hyde J. Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med. 1998;39:410–6.

    Article  PubMed  CAS  Google Scholar 

  29. Talavage TM, Edmister WB, Ledden PJ, Weisskoff RM. Quantitative assessment of auditory cortex responses induced by imager acoustic noise. Hum Brain Mapp. 1999;7:79–88.

    Article  PubMed  CAS  Google Scholar 

  30. Hall DA, Chambers J, Akeroyd MA, Foster JR, Coxon R, Palmer AR. Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. J Acoust Soc Am. 2009;25:347–59.

    Article  Google Scholar 

  31. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp. 1999;7:89–97.

    Article  PubMed  CAS  Google Scholar 

  32. Ravicz ME, Melcher JR, Kiang NYS. Acoustic noise during functional magnetic resonance imaging. J Acoust Soc Am. 2000;108:1683–96.

    Article  PubMed  CAS  Google Scholar 

  33. Chambers J, Akeroyd MA, Summerfield AQ, Palmer AR. Active control of the volume acquisition noise in functional magnateic resonance imaging: method and psychoacoustical investigation. J Acoust Soc Am. 2001;110:3041–54.

    Article  PubMed  CAS  Google Scholar 

  34. Mansfield P, Chapman BLW, Bowtell R, Glover P, Coxon R, Harvey PR. Active acoustic screening: reduction of noise in gradient coils by Lorentz force balancing. Magn Reson Med. 1995;33:276–81.

    Article  PubMed  CAS  Google Scholar 

  35. Bowtell R, Mansfield P. Quiet transverse gradient coils: Lorentz force balanced designs using geometric similitude. Magn Reson Med. 1995;34:494–7.

    Article  PubMed  CAS  Google Scholar 

  36. Hedeen RA, Edelstein WA. Characterisation and prediction of gradient acoustic noise in MR imagers. Magn Reson Med. 1997;37:7–10.

    Article  PubMed  CAS  Google Scholar 

  37. Hennel F, Girard F, Loenneker T. “Silent” MRI with soft gradient pulses. Magn Reson Med. 1999;42:6–10.

    Article  PubMed  CAS  Google Scholar 

  38. Schmitter S, Diesch E, Amann M, Kroll A, Moayer M, Schad LR. Silent echo-planar imaging for auditory FMRI. Magma. 2008;21(5):317–25.

    Article  PubMed  CAS  Google Scholar 

  39. Hall DA, Summerfield AQ, Gonçalves MS, Foster JR, Palmer AR, Bowtell RW. Time-course of the auditory BOLD response to scanner noise. Magn Reson Med. 2000;43:601–6.

    Article  PubMed  CAS  Google Scholar 

  40. Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, et al. Sparse temporal sampling in auditory fMRI. Hum Brain Mapp. 1999;7:213–23.

    Article  PubMed  CAS  Google Scholar 

  41. Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B. Event-related fMRI of auditory cortex. Neuroimage. 1999;10:417–29.

    Article  PubMed  CAS  Google Scholar 

  42. Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J. Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex. 1998;8:156–63.

    Article  PubMed  CAS  Google Scholar 

  43. Neuman AC. Central auditory system plasticity and aural rehabilitation of adults. J Rehabil Res Dev. 2005;42(4):169–86.

    Article  PubMed  Google Scholar 

  44. Langers DR, van Dijk P, Backes WH. Lateralization, connectivity and plasticity in the human central auditory system. Neuroimage. 2005;28:490–9.

    Article  PubMed  Google Scholar 

  45. Jäncke L, Gaab N, Wüstenberg T, Scheich H, Heinze HJ. Short-term functional plasticity in the human auditory cortex: an fMRI study. Cogn Brain Res. 2001;12:479–85.

    Article  Google Scholar 

  46. Tschopp K, Schillinger C, Schmid N, Rausch M, Bilecen D, Scheffler K. Evidence of central auditory compensation in unilateral deaf patients detected by functional MRI. Laryngol Rhinol Otol. 2000;79:753–7.

    Article  CAS  Google Scholar 

  47. Firszt J, Ulmer J, Gaggl W. Differential representation of speech sounds in the human cerebral hemispheres. Anat Rec A. 2006;288A:345–57.

    Article  Google Scholar 

  48. Moore DR, Devlin JT, Raley J, Tunbridge E, Lanary K, Floyer-Lea A, et al. Effects of long term unilateral hearing loss on the lateralization of fMRI measured activation in human auditory cortex. In: Syka J, Merzenich MM, editors. Plasticity of the central auditory system and processing of complex acoustic signals. New York: Kluwer-Plenum; 2004. p. 1–11.

    Google Scholar 

  49. Bilecen D, Seifritz E, Radü EW, Schmid N, Wetzel S, Probst R, et al. Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology. 2000;54:765.

    PubMed  CAS  Google Scholar 

  50. Neuman AC. Late-onset auditory deprivation: a review of past research and an assessment of future research needs. Ear Hear. 1996;17(3 Suppl):S3–S13.

    Article  Google Scholar 

  51. Silverman CA, Emmer MB. Auditory deprivation and recovery in adults with asymmetric sensorineural hearing impairment. J Am Acad Audiol. 1993;4(5):338–46.

    PubMed  CAS  Google Scholar 

  52. Hwang JH, Wu CW, Chen JH, Liu TC. Changes in activation of the auditory cortex following long-term amplification: an fMRI study. Acta Otolaryngol. 2006;126:1275–80.

    Article  PubMed  Google Scholar 

  53. Suzuki M, Kouzaki H, Nishida Y, Shiino A, Ito R, Kitano H. Cortical representation of hearing restoration in patients with sudden deafness. Neuroreport. 2002;13:1829–32.

    Article  PubMed  Google Scholar 

  54. Giraud AL, Truy E, Frackowiak R. Imaging plasticity in cochlear implant patients. Audiol Neurootol. 2001;6:381–93.

    Article  PubMed  CAS  Google Scholar 

  55. Lee HJ, Giraud AL, Kang E, Oh SH, Kang H, Kim CS, et al. Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex. 2007;17:909–17.

    Article  PubMed  Google Scholar 

  56. Hofmann E, Preibisch C, Knaus C, Muller J, Kremser C, Teissl C. Noninvasive direct stimulation of the cochlear nerve for functional MR imaging of the auditory cortex. Am J Neuroradiol. 1999;20:1970–2.

    PubMed  CAS  Google Scholar 

  57. Neumann K, Preibisch C, Spreer J, Raab P, Hamm J, Euler HA, et al. Testing the diagnostic value of electrical ear canal stimulation in cochlear implant candidates by functional magnetic resonance imaging. Audiol Neurootol. 2008;13(5):281–92.

    Article  PubMed  Google Scholar 

  58. Alwatban AZ, Ludman CN, Mason SM, O’Donoghue GM, Peters AM, Morris PG. A method for the direct electrical stimulation of the auditory system in deaf subjects: a functional magnetic resonance imaging study. J Magn Reson Imaging. 2002;16:6–12.

    Article  PubMed  Google Scholar 

  59. Schmidt AM, Weber BP, Becker H. Functional magnetic resonance imaging of the auditory cortex as a diagnostic tool in cochlear implant candidates. Neuroimaging Clin N Am. 2001;11:297–304.

    PubMed  CAS  Google Scholar 

  60. Schmidt AM, Weber BP, Vahid M, Zacharias R, Neuburger J, Witt M, et al. Functional MR imaging of the auditory cortex with electrical stimulation of the promontory in 35 deaf patients before cochlea implantation. Am J Neuroradiol. 2003;24:201–7.

    PubMed  Google Scholar 

  61. Berthezène Y, Truy E, Morgon A, Giard HM, Hermier M, Franconi JM, et al. Auditory cortex activation in deaf subjects during cochlear electrical stimulation. Investig Radiol. 1997;32:297–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah A. Hall BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hall, D.A. (2011). fMRI of the Central Auditory System. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_29

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics