Skip to main content

CGRP in Spinal Cord Pain Mechanisms

  • Chapter
  • First Online:
Synaptic Plasticity in Pain

Abstract

Calcitonin gene-related peptide (CGRP) has emerged as an important molecule at different levels of the pain neuraxis. Anatomical, neurochemical, electrophysiological and behavioral data strongly suggest that CGRP in the spinal cord enhances neurotransmission, neuronal excitability, and nocifensive behaviors in preclinical pain models. Spinal CGRP also modulates the transmission of nociceptive information to supraspinal sites, thus contributing to high integrated pain behaviors. The precise mechanism of action of CGRP is still not fully understood, in part because of the complexity of the CGRP receptor(s). There is strong evidence for postsynaptic actions in the spinal cord, but CGRP receptors appear to be localized on both pre- and post-synaptic elements and can modulate the release and action of other transmitters as well. The availability of CGRP antagonists that have been tested successfully in Phase II clinical trials for migraine headache offers an important opportunity for new and improved therapeutic strategies in certain pain states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLR:

calcitonin-like receptors

DAMGO:

[D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin

GPCRs:

G-protein coupled receptors

NO:

nitric oxyde

PKA:

protein kinase A

PKC:

protein kinase C

RAMP1:

receptor activity-modifying protein 1

RCP:

receptor component protein

VGLUT2:

vesicular glutamate transporter -2

References

  • Adwanikar H, Ji G, Li W, Doods H, Willis WD, Neugebauer V (2007) Spinal CGRP1 receptors contribute to supraspinally organized pain behavior and pain-related sensitization of amygdala neurons. Pain 132:53–66.

    Article  PubMed  CAS  Google Scholar 

  • Aiyar N, Daines RA, Disa J, Chambers PA, Sauermelch CF, Quiniou M, Khandoudi N, Gout B, Douglas SA, Willette RN (2001) Pharmacology of SB-273779, a nonpeptide calcitonin gene-related peptide 1 receptor antagonist. J Pharmacol Exp Ther 296:768–775.

    PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244.

    Article  PubMed  CAS  Google Scholar 

  • Bennett AD, Chastain KM, Hulsebosch CE (2000) Alleviation of mechanical and thermal allodynia by CGRP8-37 in a rodent model of chronic central pain. Pain 86:163–175.

    Article  PubMed  CAS  Google Scholar 

  • Biella G, Panara C, Pecile A, Sotgiu ML (1991) Facilitatory role of calcitonin gene-related peptide (CGRP) on excitation induced by substance P (SP) and noxious stimuli in rat spinal dorsal horn neurons. An iontophoretic study in vivo. Brain Res 559:352–356.

    Article  PubMed  CAS  Google Scholar 

  • Bird GC, Han JS, Fu Y, Adwanikar H, Willis WD, Neugebauer V (2006) Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP. Mol Pain 2:31.

    Article  PubMed  Google Scholar 

  • Bourgoin S, Pohl M, Benoliel JJ, Mauborgne A, Collin E, Hamon M, Cesselin F (1992) gamma-Aminobutyric acid, through GABAA receptors, inhibits the potassium-stimulated release of calcitonin gene-related peptide- but not that of substance P-like material from rat spinal cord slices. Brain Res 583:344–348.

    Article  PubMed  CAS  Google Scholar 

  • Brain SD, Cox HM (2006) Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 147 Suppl 1:S202–S211.

    PubMed  CAS  Google Scholar 

  • Braz JM, Nassar MA, Wood JN, Basbaum AI (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47:787–793.

    Article  PubMed  CAS  Google Scholar 

  • Chang CL, Roh J, Hsu SY (2004) Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates. Peptides 25:1633–1642.

    Article  PubMed  CAS  Google Scholar 

  • Christensen MD, Hulsebosch CE (1997) Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat. Exp Neurol 147:463–475.

    Article  PubMed  CAS  Google Scholar 

  • Collin E, Mantelet S, Frechilla D, Pohl M, Bourgoin S, Hamon M, Cesselin F (1993) Increased in vivo release of calcitonin gene-related peptide-like material from the spinal cord in arthritic rats. Pain 54:203–211.

    Article  PubMed  CAS  Google Scholar 

  • Cottrell GS, Roosterman D, Marvizon JC, Song B, Wick E, Pikios S, Wong H, Berthelier C, Tang Y, Sternini C, Bunnett NW, Grady EF (2005) Localization of calcitonin receptor-like receptor and receptor activity modifying protein 1 in enteric neurons, dorsal root ganglia, and the spinal cord of the rat. J Comp Neurol 490:239–255.

    Article  PubMed  CAS  Google Scholar 

  • Cridland RA, Henry JL (1988) Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VIP, galanin, CGRP, TRH, somatostatin and angiotensin II. Neuropeptides 11:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Cridland RA, Henry JL (1989) Intrathecal administration of CGRP in the rat attenuates a facilitation of the tail flick reflex induced by either substance P or noxious cutaneous stimulation. Neurosci Lett 102:241–246.

    Article  PubMed  CAS  Google Scholar 

  • Donnerer J, Schuligoi R, Stein C (1992) Increased content and transport of substance P and calcitonin gene- related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience 49:693–698.

    Article  PubMed  CAS  Google Scholar 

  • Doods H, Arndt K, Rudolf K, Just S (2007) CGRP antagonists: unravelling the role of CGRP in migraine. Trends Pharmacol Sci 28:580–587.

    Article  PubMed  CAS  Google Scholar 

  • Doods H, Hallermayer G, Wu D, Entzeroth M, Rudolf K, Engel W, Eberlein W (2000) Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharm 129:420–423.

    Article  CAS  Google Scholar 

  • Dymshitz J, Vasko MR (1994) Nitric oxide and cyclic guanosine 3',5'-monophosphate do not alter neuropeptide release from rat sensory neurons grown in culture. Neuroscience 62:1279–1286.

    Article  PubMed  CAS  Google Scholar 

  • Ebersberger A, Charbel Issa P, Vanegas H, Schaible H-G (2000) Differential effects of calcitonin gene-related peptide and calcitonin gene-related peptide 8-37 upon responses to N-methyl--aspartate or (R,S)-[alpha]-amino-3-hydroxy-5-methylisoxazole-4-propionate in spinal nociceptive neurons with knee joint input in the rat. Neuroscience 99:171–178.

    Article  PubMed  CAS  Google Scholar 

  • Evans AR, Nicol GD, Vasko MR (1996) Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res 712:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Galeazza MT, Garry MG, Yost HJ, Strait KA, Hargreaves KM, Seybold VS (1995) Plasticity in the synthesis and storage of substance P and calcitonin gene-related peptide in primary afferent neurons during peripheral inflammation. Neuroscience 66:443–458.

    Article  PubMed  CAS  Google Scholar 

  • Galeazza MT, Stucky CL, Seybold VS (1992) Changes in [125I]hCGRP binding in rat spinal cord in an experimental model of acute, peripheral inflammation. Brain Res 591:198–208.

    Article  PubMed  CAS  Google Scholar 

  • Gamse R, Saria A (1986) Nociceptive behavior after intrathecal injections of substance P, neurokinin A and calcitonin gene-related peptide in mice. Neurosci Lett 70:143–147.

    Article  PubMed  CAS  Google Scholar 

  • Garry MG, Hargreaves KM (1992) Enhanced release of immunoreactive CGRP and substance P from spinal dorsal horn slices occurs during carrageenan inflammation. Brain Res 582:139–142.

    Article  PubMed  CAS  Google Scholar 

  • Garry MG, Walton LP, Davis MA (2000) Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res 861:208–219.

    Article  PubMed  CAS  Google Scholar 

  • Gauriau C, Bernard J-F (2004) A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 468:24–56.

    Article  PubMed  Google Scholar 

  • Geppetti P, Capone JG, Trevisani M, Nicoletti P, Zagli G, Tola MR (2005) CGRP and migraine: neurogenic inflammation revisited. J Headache Pain 6:61–70.

    Article  PubMed  Google Scholar 

  • Han JS, Bird GC, Li W, Neugebauer V (2005a) Computerized analysis of audible and ultrasonic vocalizations of rats as a standardized measure of pain-related behavior. J Neurosci Meth 141:261–269.

    Article  Google Scholar 

  • Han JS, Li W, Neugebauer V (2005b) Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 25:10717–10728.

    Article  PubMed  CAS  Google Scholar 

  • Hay DL (2007) What makes a CGRP2 receptor? Clin Exp Pharmacol Physiol 34:963–971.

    Article  PubMed  CAS  Google Scholar 

  • Hay DL, Poyner DR, Sexton PM (2006) GPCR modulation by RAMPs. Pharmacol Ther 109:173–197.

    Article  PubMed  CAS  Google Scholar 

  • Hingtgen CM, Vasko MR (1994) Prostacyclin enhances the evoked-release of substance P and calcitonin gene-related peptide from rat sensory neurons. Brain Res 655:51–60.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M (2000) Neuropeptides – an overview. Neuropharmacology 39:1337–1356.

    Article  PubMed  CAS  Google Scholar 

  • Kar S, Rees RG, Quirion R (1994) Altered calcitonin gene-related peptide, substance P and enkephalin immunoreactivities and receptor binding sites in the dorsal spinal cord of the polyarthritic rat. Eur J Neurosci 6:345–354.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura M, Kuraishi Y, Minami M, Satoh M (1989) Antinociceptive effect of intrathecally administered antiserum against calcitonin gene-related peptide on thermal and mechanical noxious stimuli in experimental hyperalgesic rats. Brain Res 497:199–203.

    Article  PubMed  CAS  Google Scholar 

  • Kuraishi Y, Nanayama T, Ohno H, Minami M, Satoh M (1988) Antinociception induced in rats by intrathecal administration of antiserum against calcitonin gene-related peptide. Neurosci Lett 92:325–329.

    Article  PubMed  CAS  Google Scholar 

  • Lofgren O, Yu L-C, Theodorsson E, Hansson P, Lundeberg T (1997) Intrathecal CGRP8-37 results in a bilateral increase in hindpaw withdrawal latency in rats with a unilateral thermal injury. Neuropeptides 31:601–607.

    Article  PubMed  CAS  Google Scholar 

  • Lu CL, Pasricha PJ, Hsieh JC, Lu RH, Lai CR, Wu LL, Chang FY, Lee SD (2005) Changes of the neuropeptides content and gene expression in spinal cord and dorsal root ganglion after noxious colorectal distension. Regul Pept 131:66–73.

    Article  PubMed  CAS  Google Scholar 

  • Luebke AE, Dahl GP, Roos BA, Dickerson IM (1996) Identification of a protein that confers calcitonin gene-related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay. Proc Natl Acad Sci USA 93:3455–3460.

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Chabot JG, Quirion R (2006) A role for adrenomedullin as a pain-related peptide in the rat. Proc Natl Acad Sci USA 103:16027–16032.

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Chabot J-G, Powell KJ, Jhamandas K, Dickerson IM, Quirion R (2003) Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience 120:677–694.

    Article  PubMed  CAS  Google Scholar 

  • Malcangio M, Bowery NG (1996) Calcitonin gene-related peptide content, basal outflow and electrically-evoked release from monoarthritic rat spinal cord in vitro. Pain 66:351–358.

    Article  PubMed  CAS  Google Scholar 

  • Mallee JJ, Salvatore CA, LeBourdelles B, Oliver KR, Longmore J, Koblan KS, Kane SA (2002) Receptor activity-modifying protein 1 determines the species selectivity of non-peptide CGRP receptor antagonists. J Biol Chem 277:14294–14298.

    Article  PubMed  CAS  Google Scholar 

  • Mapp PI, Terenghi G, Walsh DA, Chen ST, Cruwys SC, Garrett N, Kidd BL, Polak JM, Blake DR (1993) Monoarthritis in the rat knee induces bilateral and time-dependent changes in substance P and calcitonin gene-related peptide immunoreactivity in the spinal cord. Neuroscience 57:1091–1096.

    Article  PubMed  CAS  Google Scholar 

  • Marlier L, Poulat P, Rajaofetra N, Privat A (1991) Modifications of serotonin-, substance P- and calcitonin gene-related peptide-like immunoreactivities in the dorsal horn of the spinal cord of arthritic rats: a quantitative immunocytochemical study. Exp Brain Res 85:482–490.

    Article  PubMed  CAS  Google Scholar 

  • Marvizon JCG, Perez OA, Song B, Chen W, Bunnett NW, Grady EF, Todd AJ (2007) Calcitonin receptor-like receptor and receptor activity modifying protein 1 in the rat dorsal horn: Localization in glutamatergic presynaptic terminals containing opioids and adrenergic [alpha]2C receptors. Neuroscience 148:250–265.

    Article  PubMed  CAS  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339.

    Article  PubMed  CAS  Google Scholar 

  • Miletic V, Tan H (1988) Iontophoretic application of calcitonin gene-related peptide produces a slow and prolonged excitation of neurons in the cat lumbar dorsal horn. Brain Res 446:169–172.

    Article  PubMed  CAS  Google Scholar 

  • Morton CR, Hutchison WD (1989) Release of sensory neuropeptides in the spinal cord: studies with calcitonin gene-related peptide and galanin. Neuroscience 31:807–815.

    Article  PubMed  CAS  Google Scholar 

  • Mulder H, Zhang Y, Danielsen N, Sundler F (1997) Islet amyloid polypeptide and calcitonin gene-related peptide expression are upregulated in lumbar dorsal root ganglia after unilateral adjuvant-induced inflammation in the rat paw. Brain Res Mol Brain Res 50:127–135.

    Article  PubMed  CAS  Google Scholar 

  • Murase K, Ryu PD, Randic M (1989) Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett 103:56–63.

    Article  PubMed  CAS  Google Scholar 

  • Nazarian A, Gu G, Gracias NG, Wilkinson K, Hua XY, Vasko MR, Yaksh TL (2008) Spinal N-methyl-d-aspartate receptors and nociception-evoked release of primary afferent substance P. Neuroscience 152:119–127.

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer V, Rumenapp P, Schaible H-G (1996) Calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the rat's knee joint and in the generation and maintenance of hyperexcitability of dorsal horn neurons during development of acute inflammation. Neuroscience 71:1095–1109.

    Article  PubMed  CAS  Google Scholar 

  • Njuki F, Nicholl CG, Howard A, Mak JC, Barnes PJ, Girgis SI, Legon S (1993) A new calcitonin-receptor-like sequence in rat pulmonary blood vessels. Clin Sci (Lond) 85:385–388.

    CAS  Google Scholar 

  • Oku R, Satoh M, Fujii N, Otaka A, Yajima H, Takagi H (1987) Calcitonin gene-related peptide promotes mechanical nociception by potentiating release of substance P from the spinal dorsal horn in rats. Brain Res 403:350–354.

    Article  PubMed  CAS  Google Scholar 

  • Pin SS, Bahr BA (2008) Protein kinase C is a common component of CGRP receptor desensitization induced by distinct agonists. Eur J Pharmacol.

    Google Scholar 

  • Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54:233–246.

    Article  PubMed  CAS  Google Scholar 

  • Quirion R, Van Rossum D, Dumont Y, St Pierre S, Fournier A (1992) Characterization of CGRP1 and CGRP2 receptor subtypes. Ann NY Acad Sci 657:88–105.

    Article  PubMed  CAS  Google Scholar 

  • Randic M (1996) Plasticity of excitatory synaptic transmission in the spinal cord dorsal horn. Prog Brain Res 113:463–506.

    Article  PubMed  CAS  Google Scholar 

  • Ryu PD, Gerber G, Murase K, Randic M (1988a) Actions of calcitonin gene-related peptide on rat spinal dorsal horn neurons. Brain Res 441:357–361.

    Article  PubMed  CAS  Google Scholar 

  • Ryu PD, Gerber G, Murase K, Randic M (1988b) Calcitonin gene-related peptide enhances calcium current of rat dorsal root ganglion neurons and spinal excitatory synaptic transmission. Neurosci Lett 89:305–312.

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1995) Central autonomic system. In: The rat nervous system (Paxinos G, ed), pp 107–135. San Diego, CA: Academic.

    Google Scholar 

  • Schaible HG, Freudenberger U, Neugebauer V, Stiller RU (1994) Intraspinal release of immunoreactive calcitonin gene-related peptide during development of inflammation in the joint in vivo – a study with antibody microprobes in cat and rat. Neuroscience 62:1293–1305.

    Article  PubMed  CAS  Google Scholar 

  • Schaible HG, Hope PJ, Lang CW, Duggan AW (1992) Calcitonin gene-related peptide causes intraspinal spreading of substance P released by peripheral stimulation. Eur J Neurosci 4:750–757.

    Article  PubMed  CAS  Google Scholar 

  • Schaible H-G (1996) On the role of tachykinins and calcitonin gene-related peptide in the spinal mechanisms of nociception and in the induction and maintenance of inflammation-evoked hyperexcitability in spinal cord neurons (with special reference to nociception in joints). Prog Brain Res 113:423–441.

    Article  PubMed  CAS  Google Scholar 

  • Skofitsch G, Jacobowitz DM (1985) Calcitonin gene-related peptide: detailed immunohistochemical distribution in the central nervous system. Peptides 6: 721.

    Article  PubMed  CAS  Google Scholar 

  • Skofitsch G, Wimalawansa SJ, Jacobowitz DM, Gubisch W (1995) Comparative immunohistochemical distribution of amylin-like and calcitonin gene related peptide like immunoreactivity in the rat central nervous system. Can J Physiol Pharmacol 73:945–956.

    PubMed  CAS  Google Scholar 

  • Sluka KA, Dougherty PM, Sorkin LS, Willis WD, Westlund KN (1992) Neural changes in acute arthritis in monkeys. III. Changes in substance P, calcitonin gene-related peptide and glutamate in the dorsal horn of the spinal cord. Brain Res Brain Res Rev 17:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Sluka KA, Westlund KN (1993a) Behavioral and immunohistochemical changes in an experimental arthritis model in rats. Pain 55:367–377.

    Article  PubMed  CAS  Google Scholar 

  • Sluka KA, Westlund KN (1993b) Spinal cord amino acid release and content in an arthritis model: the effects of pretreatment with non-NMDA, NMDA, and NK1 receptor antagonists. Brain Res 627:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Sun RQ, Lawand NB, Lin Q, Willis WD (2004a) Role of calcitonin gene-related peptide in the sensitization of dorsal horn neurons to mechanical stimulation after intradermal injection of capsaicin. J Neurophysiol 92:320–326.

    Article  PubMed  CAS  Google Scholar 

  • Sun RQ, Lawand NB, Willis WD (2003) The role of calcitonin gene-related peptide (CGRP) in the generation and maintenance of mechanical allodynia and hyperalgesia in rats after intradermal injection of capsaicin. Pain 104:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Sun RQ, Tu YJ, Lawand NB, Yan JY, Lin Q, Willis WD (2004b) Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 92:2859–2866.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CK, Smith DD, Hulce M, Abel PW (2006) Pharmacological characterization of novel alpha-Calcitonin Gene-Related Peptide (CGRP) receptor peptide antagonists that are selective for human CGRP receptors. J Pharmacol Exp Ther 319:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Van Rossum D, Hanish U-K, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678.

    Article  PubMed  Google Scholar 

  • Vizzard MA (2001) Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat 21:125–138.

    Article  PubMed  CAS  Google Scholar 

  • Willis WD, Coggeshall RE (2004) Sensory mechanisms of the spinal cord. New York: Plenum.

    Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585.

    PubMed  CAS  Google Scholar 

  • Xu XJ, Wiesenfeld-Hallin Z (1996) Calcitonin gene-related peptide (8-37) does not antagonize calcitonin gene-related peptide in rat spinal cord. Neurosci Lett 204:185–188.

    Article  PubMed  CAS  Google Scholar 

  • Yashpal K, Kar S, Dennis T, Quirion R (1992) Quantitative autoradiographic distribution of calcitonin gene-related peptide (hCGRP alpha) binding sites in the rat and monkey spinal cord. J Comp Neurol 322:224–232.

    Article  PubMed  CAS  Google Scholar 

  • Ye Z, Wimalawansa SJ, Westlund KN (1999) Receptor for calcitonin gene-related peptide: localization in the dorsal and ventral spinal cord. Neuroscience 92:1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Yu LC, Hansson P, Lundeberg T (1994) The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses in rats. Brain Res 653:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Yu LC, Hansson P, Lundeberg T (1996a) The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses bilaterally in rats with unilateral experimental mononeuropathy, an effect reversed by naloxone. Neuroscience 71:523–531.

    Article  PubMed  CAS  Google Scholar 

  • Yu L-C, Hansson P, Brodda-Jansen G, Theodorsson E, Lundeberg T (1996b) Intrathecal CGRP8-37-induced bilateral increase in hindpaw withdrawal latency in rats with unilateral inflammation. Br J Pharmacol 117:43–50.

    PubMed  CAS  Google Scholar 

  • Yu LC, Hansson P, Lundeberg S, Lundeberg T (1998) Effects of calcitonin gene-related peptide-(8-37) on withdrawal responses in rats with inflammation. Eur J Pharmacol 347:275–282.

    Article  PubMed  CAS  Google Scholar 

  • Yu LC, Zheng EM, Lundeberg T (1999) Calcitonin gene-related peptide 8-37 inhibits the evoked discharge frequency of wide dynamic range neurons in dorsal horn of the spinal cord in rats. Regul Pept 83:21–24.

    Article  PubMed  CAS  Google Scholar 

  • Yue X, Tumati S, Navratilova E, Strop D, St John PA, Vanderah TW, Roeske WR, Yamamura HI, Varga EV (2008) Sustained morphine treatment augments basal CGRP release from cultured primary sensory neurons in a Raf-1 dependent manner. Eur J Pharmacol 584:272–277.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hoff AO, Wimalawansa SJ, Cote GJ, Gagel RF, Westlund KN (2001) Arthritic calcitonin/[alpha] calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity. Pain 89:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Zhang RX, Mi ZP, Qiao JT (1994) Changes of spinal substance P, calcitonin gene-related peptide, somatostatin, Met-enkephalin and neurotensin in rats in response to formalin-induced pain. Regul Pept 51:25–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author’s work is supported by NIH grants NS38261 and NS11255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Neugebauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neugebauer, V. (2009). CGRP in Spinal Cord Pain Mechanisms. In: Malcangio, M. (eds) Synaptic Plasticity in Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0226-9_8

Download citation

Publish with us

Policies and ethics