Dorsal Horn Substance P and NK1 Receptors: Study of a Model System in Spinal Nociceptive Processing



Small unmyelinated fibers are the primary afferents by which input initiated by high intensity thermal and mechanical stimuli or by chemical products generated secondary to tissue injury, is communicated to the spinal cord. Events which increase small afferent terminal excitability and neurotransmitter release enhance the nociceptive message, while events which diminish small afferent terminal excitability/release diminish the magnitude of the post-synaptic depolarization and attenuate the pain message. The regulation of the activity of small afferent terminals which contain and release SP at the spinal level can be reasonably interpreted as representing effects (direct or indirect) on this family of peptidergic C-fiber terminals. Thus, SP release provides a well-defined model system for characterizing modulatory components involved in the in vivo regulation of pain behavior at this critical first order link.


Nerve Growth Factor Dorsal Root Ganglion Dorsal Horn Dorsal Root Ganglion Neuron Spinal Dorsal Horn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid


brain-derived neurotrophic factor


calcitonin gene-related peptide




G protein-coupled receptors


large dense core vesicles


mitogen-activated protein kinase


nerve growth factor


neurokinin 1


neurokinin A


neurokinin B




neuropeptide Y


prostaglandin E2


phosphlipase A2


phospholipase C


protein kinase A


protein kinase C


preprotachykinin A


preprotachykinin B


reactive oxygen species


substance P


transient receptor potential receptor


transient receptor potential vanilloid 1 receptors



The authors wish to thank Bethany Fitzsimmons for the artwork and Dr. Linda Sorkin for reading the manuscript. This work was supported by NIH Grant NS 16541 and DA02110.


  1. Abbadie, C., Lombard, M. C., Besson, J. M., Trafton, J. A. and Basbaum, A. I., 2002. Mu and delta opioid receptor-like immunoreactivity in the cervical spinal cord of the rat after dorsal rhizotomy or neonatal capsaicin: an analysis of pre- and postsynaptic receptor distributions. Brain Res. 930, 150–162.PubMedGoogle Scholar
  2. Abbadie, C., Trafton, J., Liu, H., Mantyh, P. W. and Basbaum, A. I., 1997. Inflammation increases the distribution of dorsal horn neurons that internalize the neurokinin-1 receptor in response to noxious and non-noxious stimulation. J Neurosci. 17, 8049–8060.PubMedGoogle Scholar
  3. Afrah, A. W., Stiller, C. O., Olgart, L., Brodin, E. and Gustafsson, H., 2001. Involvement of spinal N-methyl-D-aspartate receptors in capsaicin-induced in vivo release of substance P in the rat dorsal horn. Neurosci Lett. 316, 83–86.PubMedGoogle Scholar
  4. Agarwal, N., Pacher, P., Tegeder, I., Amaya, F., Constantin, C. E., Brenner, G. J., Rubino, T., Michalski, C. W., Marsicano, G., Monory, K., Mackie, K., Marian, C., Batkai, S., Parolaro, D., Fischer, M. J., Reeh, P., Kunos, G., Kress, M., Lutz, B., Woolf, C. J. and Kuner, R., 2007. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci. 10, 870–879.PubMedGoogle Scholar
  5. Ahluwalia, J., Urban, L., Bevan, S. and Nagy, I., 2003. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci. 17, 2611–2618.PubMedGoogle Scholar
  6. Aimone, L. D. and Yaksh, T. L., 1989. Opioid modulation of capsaicin-evoked release of substance P from rat spinal cord in vivo. Peptides. 10, 1127–1131.PubMedGoogle Scholar
  7. Akasu, T., Ishimatsu, M. and Yamada, K., 1996. Tachykinins cause inward current through NK1 receptors in bullfrog sensory neurons. Brain Res. 713, 160–167.PubMedGoogle Scholar
  8. Allen, B. J., Rogers, S. D., Ghilardi, J. R., Menning, P. M., Kuskowski, M. A., Basbaum, A. I., Simone, D. A. and Mantyh, P. W., 1997. Noxious cutaneous thermal stimuli induce a graded release of endogenous substance P in the spinal cord: imaging peptide action in vivo. J Neurosci. 17, 5921–5927.PubMedGoogle Scholar
  9. Allen, J. W., Mantyh, P. W., Horais, K., Tozier, N., Rogers, S. D., Ghilardi, J. R., Cizkova, D., Grafe, M. R., Richter, P., Lappi, D. A. and Yaksh, T. L., 2006. Safety evaluation of intrathecal substance P-saporin, a targeted neurotoxin, in dogs. Toxicol Sci. 91, 286–298.PubMedGoogle Scholar
  10. Altier, C., Dale, C. S., Kisilevsky, A. E., Chapman, K., Castiglioni, A. J., Matthews, E. A., Evans, R. M., Dickenson, A. H., Lipscombe, D., Vergnolle, N. and Zamponi, G. W., 2007. Differential role of N-type calcium channel splice isoforms in pain. J Neurosci. 27, 6363–6373.PubMedGoogle Scholar
  11. Altier, C. and Zamponi, G. W., 2004. Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci. 25, 465–470.PubMedGoogle Scholar
  12. Barber, L. A. and Vasko, M. R., 1996. Activation of protein kinase C augments peptide release from rat sensory neurons. J Neurochem. 67, 72–80.PubMedGoogle Scholar
  13. Battaglia, G. and Rustioni, A., 1988. Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. J Comp Neurol. 277, 302–312.PubMedGoogle Scholar
  14. Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I. and Julius, D., 2006. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 124, 1269–1282.PubMedGoogle Scholar
  15. Bell, T. J., Thaler, C., Castiglioni, A. J., Helton, T. D. and Lipscombe, D., 2004. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron. 41, 127–138.PubMedGoogle Scholar
  16. Bourgoin, S., Pohl, M., Mauborgne, A., Benoliel, J. J., Collin, E., Hamon, M. and Cesselin, F., 1993. Monoaminergic control of the release of calcitonin gene-related peptide- and substance P-like materials from rat spinal cord slices. Neuropharmacology. 32, 633–640.PubMedGoogle Scholar
  17. Brimijoin, S., Lundberg, J. M., Brodin, E., Hokfelt, T. and Nilsson, G., 1980. Axonal transport of substance P in the vagus and sciatic nerves of the guinea pig. Brain Res. 191, 443–457.PubMedGoogle Scholar
  18. Cahill, C. M. and Coderre, T. J., 2002. Attenuation of hyperalgesia in a rat model of neuropathic pain after intrathecal pre- or post-treatment with a neurokinin-1 antagonist. Pain. 95, 277–285.PubMedGoogle Scholar
  19. Campbell, E. A., Gentry, C. T., Patel, S., Panesar, M. S., Walpole, C. S. and Urban, L., 1998. Selective neurokinin-1 receptor antagonists are anti-hyperalgesic in a model of neuropathic pain in the guinea-pig. Neuroscience. 87, 527–532.PubMedGoogle Scholar
  20. Cao, Y. Q., Mantyh, P. W., Carlson, E. J., Gillespie, A. M., Epstein, C. J. and Basbaum, A. I., 1998. Primary afferent tachykinins are required to experience moderate to intense pain. Nature. 392, 390–394.PubMedGoogle Scholar
  21. Carbone, E., Giancippoli, A., Marcantoni, A., Guido, D. and Carabelli, V., 2006. A new role for T-type channels in fast "low-threshold" exocytosis. Cell Calcium. 40, 147–154.PubMedGoogle Scholar
  22. Caron, M. G. and Lefkowitz, R. J., 1993. Catecholamine receptors: structure, function, and regulation. Recent Prog Horm Res. 48, 277–290.PubMedGoogle Scholar
  23. Carter, M. S. and Krause, J. E., 1990. Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide gamma. J Neurosci. 10, 2203–2214.PubMedGoogle Scholar
  24. Castiglioni, A. J., Raingo, J. and Lipscombe, D., 2006. Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J Physiol. 576, 119–134.PubMedGoogle Scholar
  25. Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Zeitz, K. R., Koltzenburg, M., Basbaum, A. I. and Julius, D., 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 288, 306–313.PubMedGoogle Scholar
  26. Chang, H. M., Berde, C. B., Holz, G. G. t., Steward, G. F. and Kream, R. M., 1989. Sufentanil, morphine, met-enkephalin, and kappa-agonist (U-50,488H) inhibit substance P release from primary sensory neurons: a model for presynaptic spinal opioid actions. Anesthesiology. 70, 672–677.PubMedGoogle Scholar
  27. Chang, M. M., Leeman, S. E. and Niall, H. D., 1971. Amino-acid sequence of substance P. Nat New Biol. 232, 86–87.PubMedGoogle Scholar
  28. Chapman, V. and Dickenson, A. H., 1993. The effect of intrathecal administration of RP67580, a potent neurokinin 1 antagonist on nociceptive transmission in the rat spinal cord. Neurosci Lett. 157, 149–152.PubMedGoogle Scholar
  29. Cheng, P. Y., Moriwaki, A., Wang, J. B., Uhl, G. R. and Pickel, V. M., 1996. Ultrastructural localization of mu-opioid receptors in the superficial layers of the rat cervical spinal cord: extrasynaptic localization and proximity to Leu5-enkephalin. Brain Res. 731, 141–154.PubMedGoogle Scholar
  30. Cui, M., Honore, P., Zhong, C., Gauvin, D., Mikusa, J., Hernandez, G., Chandran, P., Gomtsyan, A., Brown, B., Bayburt, E. K., Marsh, K., Bianchi, B., McDonald, H., Niforatos, W., Neelands, T. R., Moreland, R. B., Decker, M. W., Lee, C. H., Sullivan, J. P. and Faltynek, C. R., 2006. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci. 26, 9385–9393.PubMedGoogle Scholar
  31. De Biasi, S. and Rustioni, A., 1988. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. Proceedings of the National Academy of Science USA. 85, 7820–7824.Google Scholar
  32. De Felipe, C., Herrero, J. F., O'Brien, J. A., Palmer, J. A., Doyle, C. A., Smith, A. J., Laird, J. M., Belmonte, C., Cervero, F. and Hunt, S. P., 1998. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 392, 394–397.PubMedGoogle Scholar
  33. Del Bianco, E., Santicioli, P., Tramontana, M., Maggi, C. A., Cecconi, R. and Geppetti, P., 1991. Different pathways by which extracellular Ca2+ promotes calcitonin gene-related peptide release from central terminals of capsaicin-sensitive afferents of guinea pigs: effect of capsaicin, high K+ and low pH media. Brain Res. 566, 46–53.PubMedGoogle Scholar
  34. Dememes, D., Seoane, A., Venteo, S. and Desmadryl, G., 2000. Efferent function of vestibular afferent endings? Similar localization of N-type calcium channels, synaptic vesicle and synaptic membrane-associated proteins. Neuroscience. 98, 377–384.PubMedGoogle Scholar
  35. Dionne, R. A., Max, M. B., Gordon, S. M., Parada, S., Sang, C., Gracely, R. H., Sethna, N. F. and MacLean, D. B., 1998. The substance P receptor antagonist CP-99,994 reduces acute postoperative pain. Clin Pharmacol Ther. 64, 562–568.PubMedGoogle Scholar
  36. Dolphin, A. C. and Scott, R. H., 1987. Calcium channel currents and their inhibition by (–)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol. 386, 1–17.PubMedGoogle Scholar
  37. Duggan, A. W., Hendry, I. A., Morton, C. R., Hutchison, W. D. and Zhao, Z. Q., 1988. Cutaneous stimuli releasing immunoreactive substance P in the dorsal horn of the cat. Brain Res. 451, 261–273.PubMedGoogle Scholar
  38. Duggan, A. W., Hope, P. J., Jarrott, B., Schaible, H. G. and Fleetwood-Walker, S. M., 1990. Release, spread and persistence of immunoreactive neurokinin A in the dorsal horn of the cat following noxious cutaneous stimulation. Studies with antibody microprobes. Neuroscience. 35, 195–202.PubMedGoogle Scholar
  39. Duggan, A. W., Hope, P. J. and Lang, C. W., 1991. Microinjection of neuropeptide Y into the superficial dorsal horn reduces stimulus-evoked release of immunoreactive substance P in the anaesthetized cat. Neuroscience. 44, 733–740.PubMedGoogle Scholar
  40. Evans, A. R., Nicol, G. D. and Vasko, M. R., 1996. Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res. 712, 265–273.PubMedGoogle Scholar
  41. Fehrenbacher, J. C., Taylor, C. P. and Vasko, M. R., 2003. Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain. 105, 133–141.PubMedGoogle Scholar
  42. Field, M. J., Cox, P. J., Stott, E., Melrose, H., Offord, J., Su, T. Z., Bramwell, S., Corradini, L., England, S., Winks, J., Kinloch, R. A., Hendrich, J., Dolphin, A. C., Webb, T. and Williams, D., 2006. Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci USA. 103, 17537–17542.PubMedGoogle Scholar
  43. Fields, H. L., Emson, P. C., Leigh, B. K., Gilbert, R. F. and Iversen, L. L., 1980. Multiple opiate receptor sites on primary afferent fibres. Nature. 284, 351–353.PubMedGoogle Scholar
  44. Fyffe, R. E. and Perl, E. R., 1984. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc Natl Acad Sci USA. 81, 6890–6893.PubMedGoogle Scholar
  45. Gamse, R., Molnar, A. and Lembeck, F., 1979. Substance P release from spinal cord slices by capsaicin. Life Sci. 25, 629–636.PubMedGoogle Scholar
  46. Ghilardi, J. R., Svensson, C. I., Rogers, S. D., Yaksh, T. L. and Mantyh, P. W., 2004. Constitutive spinal cyclooxygenase-2 participates in the initiation of tissue injury-induced hyperalgesia. J Neurosci. 24, 2727–2732.PubMedGoogle Scholar
  47. Gibson, S. J., Polak, J. M., Bloom, S. R., Sabate, I. M., Mulderry, P. M., Ghatei, M. A., McGregor, G. P., Morrison, J. F., Kelly, J. S., Evans, R. M. and et al., 1984. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci. 4, 3101–3111.PubMedGoogle Scholar
  48. Go, V. L. and Yaksh, T. L., 1987. Release of substance P from the cat spinal cord. J Physiol. 391, 141–167.PubMedGoogle Scholar
  49. Grudt, T. J. and Williams, J. T., 1994. mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat. J Neurosci. 14, 1646–1654.PubMedGoogle Scholar
  50. Gu, G., Kondo, I., Hua, X. Y. and Yaksh, T. L., 2005. Resting and evoked spinal substance P release during chronic intrathecal morphine infusion: parallels with tolerance and dependence. J Pharmacol Exp Ther. 314, 1362–1369.PubMedGoogle Scholar
  51. Guan, J. S., Xu, Z. Z., Gao, H., He, S. Q., Ma, G. Q., Sun, T., Wang, L. H., Zhang, Z. N., Lena, I., Kitchen, I., Elde, R., Zimmer, A., He, C., Pei, G., Bao, L. and Zhang, X., 2005. Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell. 122, 619–631.PubMedGoogle Scholar
  52. Heinke, B., Balzer, E. and Sandkuhler, J., 2004. Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci. 19, 103–111.PubMedGoogle Scholar
  53. Hill, R., 2000. NK1 (substance P) receptor antagonists – why are they not analgesic in humans? Trends Pharmacol Sci. 21, 244–246.PubMedGoogle Scholar
  54. Hingtgen, C. M. and Vasko, M. R., 1994. Prostacyclin enhances the evoked-release of substance P and calcitonin gene-related peptide from rat sensory neurons. Brain Res. 655, 51–60.PubMedGoogle Scholar
  55. Hokfelt, T., Arvidsson, U., Cullheim, S., Millhorn, D., Nicholas, A. P., Pieribone, V., Seroogy, K. and Ulfhake, B., 2000. Multiple messengers in descending serotonin neurons: localization and functional implications. J Chem Neuroanat. 18, 75–86.PubMedGoogle Scholar
  56. Hokfelt, T., Kellerth, J. O., Nilsson, G. and Pernow, B., 1975. Substance P localization in the central nervous system and in some primary sensory neurons. Science. 190, 889–890.PubMedGoogle Scholar
  57. Hokfelt, T., Pernow, B. and Wahren, J., 2001. Substance P: a pioneer amongst neuropeptides. J Intern Med. 249, 27–40.PubMedGoogle Scholar
  58. Holmgren, S. and Jensen, J., 2001. Evolution of vertebrate neuropeptides. Brain Res Bull. 55, 723–735.PubMedGoogle Scholar
  59. Holzer, P., 1991. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 43, 143–201.PubMedGoogle Scholar
  60. Honor, P., Menning, P. M., Rogers, S. D., Nichols, M. L., Basbaum, A. I., Besson, J. M. and Mantyh, P. W., 1999. Spinal substance P receptor expression and internalization in acute, short-term, and long-term inflammatory pain states. J Neurosci. 19, 7670–7678.PubMedGoogle Scholar
  61. Honore, P., Menning, P. M., Rogers, S. D., Nichols, M. L. and Mantyh, P. W., 2000. Neurochemical plasticity in persistent inflammatory pain. Prog Brain Res. 129, 357–363.PubMedGoogle Scholar
  62. Hua, F., Ricketts, B. A., Reifsteck, A., Ardell, J. L. and Williams, C. A., 2004. Myocardial ischemia induces the release of substance P from cardiac afferent neurons in rat thoracic spinal cord. Am J Physiol Heart Circ Physiol. 286, H1654–1664.PubMedGoogle Scholar
  63. Hua, X. Y., Boublik, J. H., Spicer, M. A., Rivier, J. E., Brown, M. R. and Yaksh, T. L., 1991. The antinociceptive effects of spinally administered neuropeptide Y in the rat: systematic studies on structure-activity relationship. J Pharmacol Exp Ther. 258, 243–248.PubMedGoogle Scholar
  64. Hua, X. Y., Chen, P., Marsala, M. and Yaksh, T. L., 1999. Intrathecal substance P-induced thermal hyperalgesia and spinal release of prostaglandin E2 and amino acids. Neuroscience. 89, 525–534.PubMedGoogle Scholar
  65. Hua, X. Y., Chen, P., Polgar, E., Nagy, I., Marsala, M., Phillips, E., Wollaston, L., Urban, L., Yaksh, T. L. and Webb, M., 1998. Spinal neurokinin NK1 receptor down-regulation and antinociception: effects of spinal NK1 receptor antisense oligonucleotides and NK1 receptor occupancy. J Neurochem. 70, 688–698.PubMedGoogle Scholar
  66. Hua, X. Y., Theodorsson-Norheim, E., Brodin, E., Lundberg, J. M. and Hokfelt, T., 1985. Multiple tachykinins (Neurokinin A, Neuropeptide K and Substance P) in capsaicin-sensitive sensory neurons in the guinea-pig. Regul Pept. 13, 1–19.PubMedGoogle Scholar
  67. Huang, H., Wu, X., Nicol, G. D., Meller, S. and Vasko, M. R., 2003. ATP augments peptide release from rat sensory neurons in culture through activation of P2Y receptors. J Pharmacol Exp Ther. 306, 1137–1144.PubMedGoogle Scholar
  68. Hunt, S. P. and Mantyh, P. W., 2001. The molecular dynamics of pain control. Nat Rev Neurosci. 2, 83–91.PubMedGoogle Scholar
  69. Ikeda, H., Heinke, B., Ruscheweyh, R. and Sandkuhler, J., 2003. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science. 299, 1237–1240.PubMedGoogle Scholar
  70. Inoue, A., Hashimoto, T., Hide, I., Nishio, H. and Nakata, Y., 1997. 5-Hydroxytryptamine-facilitated release of substance P from rat spinal cord slices is mediated by nitric oxide and cyclic GMP. J Neurochem. 68, 128–133.PubMedGoogle Scholar
  71. Ito, K., Rome, C., Bouleau, Y. and Dulon, D., 2002. Substance P mobilizes intracellular calcium and activates a nonselective cation conductance in rat spiral ganglion neurons. Eur J Neurosci. 16, 2095–2102.PubMedGoogle Scholar
  72. Iyengar, S., Hipskind, P. A., Gehlert, D. R., Schober, D., Lobb, K. L., Nixon, J. A., Helton, D. R., Kallman, M. J., Boucher, S., Couture, R., Li, D. L. and Simmons, R. M., 1997. LY303870, a centrally active neurokinin-1 antagonist with a long duration of action. J Pharmacol Exp Ther. 280, 774–785.PubMedGoogle Scholar
  73. Jessell, T. M. and Iversen, L. L., 1977. Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature. 268, 549–551.PubMedGoogle Scholar
  74. Jhamandas, K., Yaksh, T. L., Harty, G., Szolcsanyi, J. and Go, V. L., 1984. Action of intrathecal capsaicin and its structural analogues on the content and release of spinal substance P: selectivity of action and relationship to analgesia. Brain Res. 306, 215–225.PubMedGoogle Scholar
  75. Jo, Y. H. and Schlichter, R., 1999. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci. 2, 241–245.PubMedGoogle Scholar
  76. Kangawa, K., Minamino, N., Fukuda, A. and Matsuo, H., 1983. Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. Biochem Biophys Res Commun. 114, 533–540.PubMedGoogle Scholar
  77. Khasabov, S. G., Rogers, S. D., Ghilardi, J. R., Peters, C. M., Mantyh, P. W. and Simone, D. A., 2002. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J Neurosci. 22, 9086–9098.PubMedGoogle Scholar
  78. Khasabova, I. A., Harding-Rose, C., Simone, D. A. and Seybold, V. S., 2004. Differential effects of CB1 and opioid agonists on two populations of adult rat dorsal root ganglion neurons. J Neurosci. 24, 1744–1753.PubMedGoogle Scholar
  79. Kjorsvik Bertelsen, A., Warsame Afrah, A., Gustafsson, H., Tjolsen, A., Hole, K. and Stiller, C. O., 2003. Stimulation of spinal 5-HT(2A/2C) receptors potentiates the capsaicin-induced in vivo release of substance P-like immunoreactivity in the rat dorsal horn. Brain Res. 987, 10–16.PubMedGoogle Scholar
  80. Kondo, I., Marvizon, J. C., Song, B., Salgado, F., Codeluppi, S., Hua, X. Y. and Yaksh, T. L., 2005. Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release. J Neurosci. 25, 3651–3660.PubMedGoogle Scholar
  81. Kotani, H., Hoshimaru, M., Nawa, H. and Nakanishi, S., 1986. Structure and gene organization of bovine neuromedin K precursor. Proc Natl Acad Sci USA. 83, 7074–7078.PubMedGoogle Scholar
  82. Krause, J. E., Chirgwin, J. M., Carter, M. S., Xu, Z. S. and Hershey, A. D., 1987. Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci USA. 84, 881–885.PubMedGoogle Scholar
  83. Kumazawa, T., Mizumura, K., Koda, H. and Fukusako, H., 1996. EP receptor subtypes implicated in the PGE2-induced sensitization of polymodal receptors in response to bradykinin and heat. J Neurophysiol. 75, 2361–2368.PubMedGoogle Scholar
  84. Kuraishi, Y., Hirota, N., Sato, Y., Hanashima, N., Takagi, H. and Satoh, M., 1989. Stimulus specificity of peripherally evoked substance P release from the rabbit dorsal horn in situ. Neuroscience. 30, 241–250.PubMedGoogle Scholar
  85. Lao, L. and Marvizon, J. C., 2005. GABA(A) receptor facilitation of neurokinin release from primary afferent terminals in the rat spinal cord. Neuroscience. 130, 1013–1027.PubMedGoogle Scholar
  86. Lembeck, F., 1953. Zur Frage der zentralen Ubertragung afferenter Impulse III. Mitteilung. Das Vorommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Ruckenmarks. Naunyn Schmiedebergs Arch Pharmacol. 219, 197–213.Google Scholar
  87. Linderoth, B. and Brodin, E., 1988. Tachykinin release from rat spinal cord in vitro and in vivo in response to various stimuli. Regul Pept. 21, 129–140.PubMedGoogle Scholar
  88. Liu, H., Brown, J. L., Jasmin, L., Maggio, J. E., Vigna, S. R., Mantyh, P. W. and Basbaum, A. I., 1994a. Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. Proc Natl Acad Sci USA. 91, 1009–1013.PubMedGoogle Scholar
  89. Liu, H., Mantyh, P. W. and Basbaum, A. I., 1997. NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature. 386, 721–724.PubMedGoogle Scholar
  90. Liu, H., Wang, H., Sheng, M., Jan, L. Y., Jan, Y. N. and Basbaum, A. I., 1994b. Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. Proc Natl Acad Sci USA. 91, 8383–8387.PubMedGoogle Scholar
  91. Liu, X. and Sandkuhler, J., 1997. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. J Neurophysiol. 78, 1973–1982.PubMedGoogle Scholar
  92. Maggi, C. A., 1995. The mammalian tachykinin receptors. Gen Pharmacol. 26, 911–944.PubMedGoogle Scholar
  93. Malcangio, M. and Bowery, N. G., 1993. Gamma-aminobutyric acidB, but not gamma-aminobutyric acidA receptor activation, inhibits electrically evoked substance P-like immunoreactivity release from the rat spinal cord in vitro. J Pharmacol Exp Ther. 266, 1490–1496.PubMedGoogle Scholar
  94. Malcangio, M. and Bowery, N. G., 1996. GABA and its receptors in the spinal cord. Trends Pharmacol Sci. 17, 457–462.PubMedGoogle Scholar
  95. Malcangio, M. and Bowery, N. G., 1999. Peptide autoreceptors: does an autoreceptor for substance P exist? Trends Pharmacol Sci. 20, 405–407.PubMedGoogle Scholar
  96. Malcangio, M., Fernandes, K. and Tomlinson, D. R., 1998. NMDA receptor activation modulates evoked release of substance P from rat spinal cord. Br J Pharmacol. 125, 1625–1626.PubMedGoogle Scholar
  97. Malcangio, M., Garrett, N. E., Cruwys, S. and Tomlinson, D. R., 1997. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J Neurosci. 17, 8459–8467.PubMedGoogle Scholar
  98. Malcangio, M., Ramer, M. S., Boucher, T. J. and McMahon, S. B., 2000. Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. Eur J Neurosci. 12, 139–144.PubMedGoogle Scholar
  99. Malmberg, A. B. and Yaksh, T. L., 1992. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science. 257, 1276–1279.PubMedGoogle Scholar
  100. Mantyh, P. W., Allen, C. J., Ghilardi, J. R., Rogers, S. D., Mantyh, C. R., Liu, H., Basbaum, A. I., Vigna, S. R. and Maggio, J. E., 1995a. Rapid endocytosis of a G protein-coupled receptor: substance P evoked internalization of its receptor in the rat striatum in vivo. Proc Natl Acad Sci USA. 92, 2622–2626.PubMedGoogle Scholar
  101. Mantyh, P. W., DeMaster, E., Malhotra, A., Ghilardi, J. R., Rogers, S. D., Mantyh, C. R., Liu, H., Basbaum, A. I., Vigna, S. R., Maggio, J. E. and et al., 1995b. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science. 268, 1629–1632.PubMedGoogle Scholar
  102. Mantyh, P. W., Rogers, S. D., Honore, P., Allen, B. J., Ghilardi, J. R., Li, J., Daughters, R. S., Lappi, D. A., Wiley, R. G. and Simone, D. A., 1997. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science. 278, 275–279.PubMedGoogle Scholar
  103. Martin, H. A., Basbaum, A. I., Kwiat, G. C., Goetzl, E. J. and Levine, J. D., 1987. Leukotriene and prostaglandin sensitization of cutaneous high-threshold C- and A-delta mechanonociceptors in the hairy skin of rat hindlimbs. Neuroscience. 22, 651–659.PubMedGoogle Scholar
  104. Marvizon, J. C., Grady, E. F., Stefani, E., Bunnett, N. W. and Mayer, E. A., 1999. Substance P release in the dorsal horn assessed by receptor internalization: NMDA receptors counteract a tonic inhibition by GABA(B) receptors. Eur J Neurosci. 11, 417–426.PubMedGoogle Scholar
  105. Marvizon, J. C., Martinez, V., Grady, E. F., Bunnett, N. W. and Mayer, E. A., 1997. Neurokinin 1 receptor internalization in spinal cord slices induced by dorsal root stimulation is mediated by NMDA receptors. J Neurosci. 17, 8129–8136.PubMedGoogle Scholar
  106. Marvizon, J. C., Wang, X., Matsuka, Y., Neubert, J. K. and Spigelman, I., 2003. Relationship between capsaicin-evoked substance P release and neurokinin 1 receptor internalization in the rat spinal cord. Neuroscience. 118, 535–545.PubMedGoogle Scholar
  107. Mauborgne, A., Bourgoin, S., Benoliel, J. J., Hirsch, M., Berthier, J. L., Hamon, M. and Cesselin, F., 1987. Enkephalinase is involved in the degradation of endogenous substance P released from slices of rat substantia nigra. J Pharmacol Exp Ther. 243, 674–680.PubMedGoogle Scholar
  108. McCarson, K. E. and Krause, J. E., 1994. NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced nociception. J Neurosci. 14, 712–720.PubMedGoogle Scholar
  109. McCarthy, P. W. and Lawson, S. N., 1989. Cell type and conduction velocity of rat primary sensory neurons with substance P-like immunoreactivity. Neuroscience. 28, 745–753.PubMedGoogle Scholar
  110. McLeod, A. L., Krause, J. E. and Ribeiro-Da-Silva, A., 2000. Immunocytochemical localization of neurokinin B in the rat spinal dorsal horn and its association with substance P and GABA: an electron microscopic study. J Comp Neurol. 420, 349–362.PubMedGoogle Scholar
  111. McMahon, S. B., Cafferty, W. B. and Marchand, F., 2005. Immune and glial cell factors as pain mediators and modulators. Exp Neurol. 192, 444–462.PubMedGoogle Scholar
  112. Menon-Johansson, A. S., Berrow, N. and Dolphin, A. C., 1993. G(o) transduces GABAB-receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurons. Pflugers Arch. 425, 335–343.PubMedGoogle Scholar
  113. Merighi, A., Polak, J. M. and Theodosis, D. T., 1991. Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn, with special reference to the co-localization of glutamate, substance P and calcitonin-gene related peptide. Neuroscience. 40, 67–80.PubMedGoogle Scholar
  114. Michael, G. J., Averill, S., Nitkunan, A., Rattray, M., Bennett, D. L., Yan, Q. and Priestley, J. V., 1997. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci. 17, 8476–8490.PubMedGoogle Scholar
  115. Naim, M., Spike, R. C., Watt, C., Shehab, S. A. and Todd, A. J., 1997. Cells in laminae III and IV of the rat spinal cord that possess the neurokinin-1 receptor and have dorsally directed dendrites receive a major synaptic input from tachykinin-containing primary afferents. J Neurosci. 17, 5536–5548.PubMedGoogle Scholar
  116. Nakatsuka, T. and Gu, J. G., 2001. ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J Neurosci. 21, 6522–6531.PubMedGoogle Scholar
  117. Nakatsuka, T., Mena, N., Ling, J. and Gu, J. G., 2001. Depletion of substance P from rat primary sensory neurons by ATP, an implication of P2X receptor-mediated release of substance P. Neuroscience. 107, 293–300.PubMedGoogle Scholar
  118. Naveilhan, P., Hassani, H., Lucas, G., Blakeman, K. H., Hao, J. X., Xu, X. J., Wiesenfeld-Hallin, Z., Thoren, P. and Ernfors, P., 2001. Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature. 409, 513–517.PubMedGoogle Scholar
  119. Nawa, H., Hirose, T., Takashima, H., Inayama, S. and Nakanishi, S., 1983. Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature. 306, 32–36.PubMedGoogle Scholar
  120. Nazarian A., Christianson, C. A., Hua, X.-Y. and Yaksh, T. L., 2008a. Dexmedetomidine and ST91 anlgesia in the formalin model is mediated by alpha 2A adrenoceptors: a mechanism of action distinct from morphine. Neuroscience. 152, 119–127.Google Scholar
  121. Nazarian, A., Gu, G., Gracias, N. G., Wilkinson, K., Hua, X. Y., Vasko, M. R. and Yaksh, T. L., 2008b. Spinal N-methyl-D-aspartate receptors and nociception-evoked release of primary afferent substance P. Neuroscience. 152, 119–127.PubMedGoogle Scholar
  122. Neugebauer, V., Schaible, H. G., Weiretter, F. and Freudenberger, U., 1994. The involvement of substance P and neurokinin-1 receptors in the responses of rat dorsal horn neurons to noxious but not to innocuous mechanical stimuli applied to the knee joint. Brain Res. 666, 207–215.PubMedGoogle Scholar
  123. Nicholas, A. P., Pieribone, V. A. and Hokfelt, T., 1993. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience. 56, 1023–1039.PubMedGoogle Scholar
  124. Nichols, M. L., Allen, B. J., Rogers, S. D., Ghilardi, J. R., Honore, P., Luger, N. M., Finke, M. P., Li, J., Lappi, D. A., Simone, D. A. and Mantyh, P. W., 1999. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science. 286, 1558–1561.PubMedGoogle Scholar
  125. Nicol, G. D., Klingberg, D. K. and Vasko, M. R., 1992. Prostaglandin E2 increases calcium conductance and stimulates release of substance P in avian sensory neurons. J Neurosci. 12, 1917–1927.PubMedGoogle Scholar
  126. Ohkubo, H. and Nakanishi, S., 1991. Molecular characterization of the three tachykinin receptors. Ann NY Acad Sci. 632, 53–62.PubMedGoogle Scholar
  127. Ono, H., Mishima, A., Ono, S., Fukuda, H. and Vasko, M. R., 1991. Inhibitory effects of clonidine and tizanidine on release of substance P from slices of rat spinal cord and antagonism by alpha-adrenergic receptor antagonists. Neuropharmacology. 30, 585–589.PubMedGoogle Scholar
  128. Okano,K., Kuraishi,Y. and Satoh, M., 1998. Involvement of spinal substance P and excitatory amino acids in inflammatory hyperalgesia in rats. Jpn J Pharmacol.76, 15-22.Google Scholar
  129. Otsuka, M. and Konishi, S., 1976. release of substance P-like immunoreactivity from isolated spinal cord of newborn rat. Nature. 264, 83–84.PubMedGoogle Scholar
  130. Otsuka, M. and Yoshioka, K., 1993. Neurotransmitter functions of mammalian tachykinins. Physiol Rev. 73, 229–308.PubMedGoogle Scholar
  131. Pang, I. H. and Vasko, M. R., 1986. Morphine and norepinephrine but not 5-hydroxytryptamine and gamma-aminobutyric acid inhibit the potassium-stimulated release of substance P from rat spinal cord slices. Brain Res. 376, 268–279.PubMedGoogle Scholar
  132. Pennefather, J. N., Lecci, A., Candenas, M. L., Patak, E., Pinto, F. M. and Maggi, C. A., 2004. Tachykinins and tachykinin receptors: a growing family. Life Sci. 74, 1445–1463.PubMedGoogle Scholar
  133. Pernow, B., 1953. Studies on substance P purification, occurrence, and biological actions. Acta Physiol Scand. 29, 1–90.Google Scholar
  134. Pernow, B., 1983. Substance P. Pharmacol Rev. 35, 85–141.PubMedGoogle Scholar
  135. Petruska, J. C., Cooper, B. Y., Gu, J. G., Rau, K. K. and Johnson, R. D., 2000. Distribution of P2X1, P2X2, and P2X3 receptor subunits in rat primary afferents: relation to population markers and specific cell types. J Chem Neuroanat. 20, 141–162.PubMedGoogle Scholar
  136. Pezet, S., Onteniente, B., Jullien, J., Junier, M. P., Grannec, G., Rudkin, B. B. and Calvino, B., 2001. Differential regulation of NGF receptors in primary sensory neurons by adjuvant-induced arthritis in the rat. Pain. 90, 113–125.PubMedGoogle Scholar
  137. Pohl, M., Mauborgne, A., Bourgoin, S., Benoliel, J. J., Hamon, M. and Cesselin, F., 1989. Neonatal capsaicin treatment abolishes the modulations by opioids of substance P release from rat spinal cord slices. Neurosci Lett. 96, 102–107.PubMedGoogle Scholar
  138. Polgar, E., Furuta, T., Kaneko, T. and Todd, A., 2006. Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience. 139, 687–697.PubMedGoogle Scholar
  139. Price, G. W., Wilkin, G. P., Turnbull, M. J. and Bowery, N. G., 1984. Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature. 307, 71–74.PubMedGoogle Scholar
  140. Raingo, J., Castiglioni, A. J. and Lipscombe, D., 2007. Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci. 10, 285–292.PubMedGoogle Scholar
  141. Ralevic, V. and Burnstock, G., 1998. Receptors for purines and pyrimidines. Pharmacol Rev. 50, 413–492.PubMedGoogle Scholar
  142. Regoli, D., Nguyen, Q. T. and Jukic, D., 1994. Neurokinin receptor subtypes characterized by biological assays. Life Sci. 54, 2035–2047.PubMedGoogle Scholar
  143. Ribeiro-da-Silva, A. and Hokfelt, T., 2000. Neuroanatomical localisation of Substance P in the CNS and sensory neurons. Neuropeptides. 34, 256–271.PubMedGoogle Scholar
  144. Riley, R. C., Trafton, J. A., Chi, S. I. and Basbaum, A. I., 2001. Presynaptic regulation of spinal cord tachykinin signaling via GABA(B) but not GABA(A) receptor activation. Neuroscience. 103, 725–737.PubMedGoogle Scholar
  145. Ryu, P. D. and Randic, M., 1990. Low- and high-voltage-activated calcium currents in rat spinal dorsal horn neurons. J Neurophysiol. 63, 273–285.PubMedGoogle Scholar
  146. Salter, M. W., De Koninck, Y. and Henry, J. L., 1993. Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol. 41, 125–156.PubMedGoogle Scholar
  147. Samad, T. A., Moore, K. A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventre, J. V. and Woolf, C. J., 2001. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 410, 471–475.PubMedGoogle Scholar
  148. Saria, A., Javorsky, F., Humpel, C. and Gamse, R., 1990. 5-HT3 receptor antagonists inhibit sensory neuropeptide release from the rat spinal cord. Neuroreport. 1, 104–106.PubMedGoogle Scholar
  149. Sawynok, J., Downie, J. W., Reid, A. R., Cahill, C. M. and White, T. D., 1993. ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin. Brain Res. 610, 32–38.PubMedGoogle Scholar
  150. Sawynok, J. and Liu, X. J., 2003. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol. 69, 313–340.PubMedGoogle Scholar
  151. Schmidlin, F., Roosterman, D. and Bunnett, N. W., 2003. The third intracellular loop and carboxyl tail of neurokinin 1 and 3 receptors determine interactions with beta-arrestins. Am J Physiol Cell Physiol. 285, C945–958.PubMedGoogle Scholar
  152. Schroeder, J. E., Fischbach, P. S., Zheng, D. and McCleskey, E. W., 1991. Activation of mu opioid receptors inhibits transient high- and low-threshold Ca2+ currents, but spares a sustained current. Neuron. 6, 13–20.PubMedGoogle Scholar
  153. Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S. and Erspamer, V., 2002. The tachykinin peptide family. Pharmacol Rev. 54, 285–322.PubMedGoogle Scholar
  154. Seybold, V. S., Grkovic, I., Portbury, A. L., Ding, Y. Q., Shigemoto, R., Mizuno, N., Furness, J. B. and Southwell, B. R., 1997. Relationship of NK3 receptor-immunoreactivity to subpopulations of neurons in rat spinal cord. J Comp Neurol. 381, 439–448.PubMedGoogle Scholar
  155. Shigemoto, R., Ohishi, H., Nakanishi, S. and Mizuno, N., 1992. Expression of the mRNA for the rat NMDA receptor (NMDAR1) in the sensory and autonomic ganglion neurons. Neurosci Lett. 144, 229–232.PubMedGoogle Scholar
  156. Skofitsch, G. and Jacobowitz, D. M., 1985. Calcitonin gene-related peptide coexists with substance P in capsaicin sensitive neurons and sensory ganglia of the rat. Peptides. 6, 747–754.PubMedGoogle Scholar
  157. Smart, D. and Jerman, J. C., 2000. Anandamide: an endogenous activator of the vanilloid receptor. Trends Pharmacol Sci. 21, 134.PubMedGoogle Scholar
  158. Smith, J. A., Davis, C. L. and Burgess, G. M., 2000. Prostaglandin E2-induced sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons is mediated by cAMP-dependent protein kinase A. Eur J Neurosci. 12, 3250–3258.PubMedGoogle Scholar
  159. Smith, M. T., Cabot, P. J., Ross, F. B., Robertson, A. D. and Lewis, R. J., 2002. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain. 96, 119–127.PubMedGoogle Scholar
  160. Soldo, B. L. and Moises, H. C., 1998. mu-opioid receptor activation inhibits N- and P-type Ca2+ channel currents in magnocellular neurones of the rat supraoptic nucleus. J Physiol. 513 (Pt 3), 787–804.PubMedGoogle Scholar
  161. Southall, M. D., Michael, R. L. and Vasko, M. R., 1998. Intrathecal NSAIDS attenuate inflammation-induced neuropeptide release from rat spinal cord slices. Pain. 78, 39–48.PubMedGoogle Scholar
  162. Southall, M. D. and Vasko, M. R., 2001. Prostaglandin receptor subtypes, EP3C and EP4, mediate the prostaglandin E2-induced cAMP production and sensitization of sensory neurons. J Biol Chem. 276, 16083–16091.PubMedGoogle Scholar
  163. Stone, L. S., Broberger, C., Vulchanova, L., Wilcox, G. L., Hokfelt, T., Riedl, M. S. and Elde, R., 1998. Differential distribution of alpha2A and alpha2C adrenergic receptor immunoreactivity in the rat spinal cord. J Neurosci. 18, 5928–5937.PubMedGoogle Scholar
  164. Sutton, K. G., Martin, D. J., Pinnock, R. D., Lee, K. and Scott, R. H., 2002. Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br J Pharmacol. 135, 257–265.PubMedGoogle Scholar
  165. Suzuki, R., Morcuende, S., Webber, M., Hunt, S. P. and Dickenson, A. H., 2002. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci. 5, 1319–1326.PubMedGoogle Scholar
  166. Suzuki, R., Rahman, W., Rygh, L. J., Webber, M., Hunt, S. P. and Dickenson, A. H., 2005. Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain. 117, 292–303.PubMedGoogle Scholar
  167. Svensson, C. I., Fitzsimmons, B., Azizi, S., Powell, H. C., Hua, X. Y. and Yaksh, T. L., 2005. Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem. 92, 1508–1520.PubMedGoogle Scholar
  168. Svensson, C. I., Marsala, M., Westerlund, A., Calcutt, N. A., Campana, W. M., Freshwater, J. D., Catalano, R., Feng, Y., Protter, A. A., Scott, B. and Yaksh, T. L., 2003. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 86, 1534–1544.PubMedGoogle Scholar
  169. Svensson, C. I. and Yaksh, T. L., 2002. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol. 42, 553–583.PubMedGoogle Scholar
  170. Takano, M., Takano, Y. and Yaksh, T. L., 1993. Release of calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive intestinal polypeptide (VIP) from rat spinal cord: modulation by alpha 2 agonists. Peptides. 14, 371–378.PubMedGoogle Scholar
  171. Talley, E. M., Cribbs, L. L., Lee, J. H., Daud, A., Perez-Reyes, E. and Bayliss, D. A., 1999. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 19, 1895–1911.PubMedGoogle Scholar
  172. Todd, A. J., 1996. GABA and glycine in synaptic glomeruli of the rat spinal dorsal horn. Eur J Neurosci. 8, 2492–2498.PubMedGoogle Scholar
  173. Todd, A. J., 2002. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp Physiol. 87, 245–249.PubMedGoogle Scholar
  174. Todd, A. J. and Lochhead, V., 1990. GABA-like immunoreactivity in type I glomeruli of rat substantia gelatinosa. Brain Res. 514, 171–174.PubMedGoogle Scholar
  175. Todd, A. J. and McKenzie, J., 1989. GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience. 31, 799–806.PubMedGoogle Scholar
  176. Tognetto, M., Amadesi, S., Harrison, S., Creminon, C., Trevisani, M., Carreras, M., Matera, M., Geppetti, P. and Bianchi, A., 2001. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J Neurosci. 21, 1104–1109.PubMedGoogle Scholar
  177. Too, H. P. and Maggio, J. E., 1991. Immunocytochemical localization of neuromedin K (neurokinin B) in rat spinal ganglia and cord. Peptides. 12, 431–443.PubMedGoogle Scholar
  178. Trafton, J. A., Abbadie, C. and Basbaum, A. I., 2001. Differential contribution of substance P and neurokinin A to spinal cord neurokinin-1 receptor signaling in the rat. J Neurosci. 21, 3656–3664.PubMedGoogle Scholar
  179. Trafton, J. A., Abbadie, C., Marchand, S., Mantyh, P. W. and Basbaum, A. I., 1999. Spinal opioid analgesia: how critical is the regulation of substance P signaling? J Neurosci. 19, 9642–9653.PubMedGoogle Scholar
  180. Trevisani, M., Siemens, J., Materazzi, S., Bautista, D. M., Nassini, R., Campi, B., Imamachi, N., Andre, E., Patacchini, R., Cottrell, G. S., Gatti, R., Basbaum, A. I., Bunnett, N. W., Julius, D. and Geppetti, P., 2007. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA. 104, 13519–13524.PubMedGoogle Scholar
  181. Tuchscherer, M. M. and Seybold, V. S., 1985. Immunohistochemical studies of substance P, cholecystokinin-octapeptide and somatostatin in dorsal root ganglia of the rat. Neuroscience. 14, 593–605.PubMedGoogle Scholar
  182. Urban, L., Thompson, S. W. and Dray, A., 1994. Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci. 17, 432–438.PubMedGoogle Scholar
  183. Urban, L. A. and Fox, A. J., 2000. NK1 receptor antagonists--are they really without effect in the pain clinic? Trends Pharmacol Sci. 21, 462–464; author reply 465.PubMedGoogle Scholar
  184. Vasko, M. R., Campbell, W. B. and Waite, K. J., 1994. Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J Neurosci. 14, 4987–4997.PubMedGoogle Scholar
  185. Vedder, H. and Otten, U., 1991. Biosynthesis and release of tachykinins from rat sensory neurons in culture. J Neurosci Res. 30, 288–299.PubMedGoogle Scholar
  186. Vierck, C. J., Jr., Kline, R. H. and Wiley, R. G., 2003. Intrathecal substance p-saporin attenuates operant escape from nociceptive thermal stimuli. Neuroscience. 119, 223–232.PubMedGoogle Scholar
  187. von Euler, U. S. and Gaddum, J. H., 1931. An unidentified depressor substance in certain tissue extracts. J Physiol. 72, 74–87.Google Scholar
  188. Wang, H., Kohno, T., Amaya, F., Brenner, G. J., Ito, N., Allchorne, A., Ji, R. R. and Woolf, C. J., 2005. Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J Neurosci. 25, 7986–7992.PubMedGoogle Scholar
  189. Werry, E. L., Liu, G. J. and Bennett, M. R., 2006. Glutamate-stimulated ATP release from spinal cord astrocytes is potentiated by substance P. J Neurochem. 99, 924–936.PubMedGoogle Scholar
  190. Wick, E. C., Pikios, S., Grady, E. F. and Kirkwood, K. S., 2006. Calcitonin gene-related peptide partially mediates nociception in acute experimental pancreatitis. Surgery. 139, 197–201.PubMedGoogle Scholar
  191. Wilcox, G. L., 1988. Pharmacological studies of grooming and scratching behavior elicited by spinal substance P and excitatory amino acids. Ann NY Acad Sci. 525, 228–236.PubMedGoogle Scholar
  192. Yaksh, T. L., Jessell, T. M., Gamse, R., Mudge, A. W. and Leeman, S. E., 1980. Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature. 286, 155–157.PubMedGoogle Scholar
  193. Yamamoto, T. and Yaksh, T. L., 1991. Stereospecific effects of a nonpeptidic NK1 selective antagonist, CP-96,345: antinociception in the absence of motor dysfunction. Life Sci. 49, 1955–1963.PubMedGoogle Scholar
  194. Yamamoto, T. and Yaksh, T. L., 1992. Effects of intrathecal capsaicin and an NK-1 antagonist, CP,96–345, on the thermal hyperalgesia observed following unilateral constriction of the sciatic nerve in the rat. Pain. 51, 329–334.PubMedGoogle Scholar
  195. Yamasaki, H., Kubota, Y., Takagi, H. and Tohyama, M., 1984. Immunoelectron-microscopic study on the fine structure of substance-P-containing fibers in the taste buds of the rat. J Comp Neurol. 227, 380–392.PubMedGoogle Scholar
  196. Yang, X. D., Liu, Z., Liu, H. X., Wang, L. H., Ma, C. H. and Li, Z. Z., 2007. Regulatory effect of nerve growth factor on release of substance P in cultured dorsal root ganglion neurons of rat. Neurosci Bull. 23, 215–220.PubMedGoogle Scholar
  197. Yoshimura, M. and North, R. A., 1983. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature. 305, 529–530.PubMedGoogle Scholar
  198. Zaratin, P., Angelici, O., Clarke, G. D., Schmid, G., Raiteri, M., Carita, F. and Bonanno, G., 2000. NK3 receptor blockade prevents hyperalgesia and the associated spinal cord substance P release in monoarthritic rats. Neuropharmacology. 39, 141–149.PubMedGoogle Scholar
  199. Zeitz, K. P., Guy, N., Malmberg, A. B., Dirajlal, S., Martin, W. J., Sun, L., Bonhaus, D. W., Stucky, C. L., Julius, D. and Basbaum, A. I., 2002. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci. 22, 1010–1019.PubMedGoogle Scholar
  200. Zeng, D. W. and Lynch, K. R., 1991. Distribution of alpha 2-adrenergic receptor mRNAs in the rat CNS. Brain Res Mol Brain Res. 10, 219–225.PubMedGoogle Scholar
  201. Zerari, F., Karpitskiy, V., Krause, J., Descarries, L. and Couture, R., 1998. Astroglial distribution of neurokinin-2 receptor immunoreactivity in the rat spinal cord. Neuroscience. 84, 1233–1246.PubMedGoogle Scholar
  202. Zhang, X., Bao, L., Arvidsson, U., Elde, R. and Hokfelt, T., 1998. Localization and regulation of the delta-opioid receptor in dorsal root ganglia and spinal cord of the rat and monkey: evidence for association with the membrane of large dense-core vesicles. Neuroscience. 82, 1225–1242.PubMedGoogle Scholar
  203. Zhou, X. F. and Rush, R. A., 1996. Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience. 74, 945–953.PubMedGoogle Scholar
  204. Zimmer, A., Zimmer, A. M., Baffi, J., Usdin, T., Reynolds, K., Konig, M., Palkovits, M. and Mezey, E., 1998. Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci USA. 95, 2630–2635.PubMedGoogle Scholar
  205. Zygmunt, P. M., Petersson, J., Andersson, D. A., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D. and Hogestatt, E. D., 1999. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 400, 452–457.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations