Skip to main content

Microglia, Cytokines and Pain

  • Chapter
  • First Online:
Synaptic Plasticity in Pain

Abstract

Chronic pain is a significant national health problem which afflicts more than 25% of adults in the United States, alone, and is the most common reason individuals seek medical care. Chronic and recurrent pain, which persists or recurs for more than 3 months, is itself a disease condition. Historically, our understanding of the creation and maintenance of neuropathic pathological pain has focused on neuronal mechanisms in the pain pathway. However, research conducted during the past ˜15 years has indicated that many of the neuronal and biochemical changes in the dorsal spinal cord are in part, initiated by and consequences of immune and glial cell signaling. Thus, conditions that activate and/or maintain activation of primary sensory neurons and dorsal spinal cord pain transmission neurons also involve surrounding glial activation. Well-characterized proinflammatory cytokines, derived from glia are critically involved in pathological pain. The most studied cytokines in pathological pain conditions are tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and IL-6. The anti-inflammatory cytokine, interleukin-10 (IL-10), is one of the most powerful counter-regulatory controls over proinflammatory function. Novel and promising viral and non-viral gene therapeutic approaches that employ the actions of anti-inflammatory cytokines such as interleukin-4 and IL-10 are being developed as novel therapeutics to treat chronic neuropathic pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

adenosine 5′-triphosphate

BDNF:

brain-derived neurotrophic factor

CCL2:

a chemokine of the ‘CC’ class. Also named monocyte chemo-attractant protein; MCP-1

CCI:

chronic constriction injury

CNS:

central nervous system

CSF:

cerebrospinal fluid

CX3CL1:

a chemokine of the CX3C class. Also named fractalkine

DRG:

dorsal root ganglia

GABA:

gamma-aminobutyric acid

GLAST:

glutamate (Glu)-aspartate (Asp) transporter; Glu-Asp transporter

GLT-1:

glutamate (Glu)-transporter-1; Glu-transporter-1

HSP:

heat-shock proteins

HSV:

herpes simplex virus

IL-10:

interleukin-10

IL-1β:

interleukin 1beta

IL6:

interlukin-6

IFN-γ:

interferon-gamma

JAK:

Janus Kinases

MyD88:

myeloid differentiation 88

MAP3K:

mitogen-activated protein kinase kinase kinase

MMPs:

matrix metalloproteases

NF-kB:

nuclear factor-kappaB

P2X:

ATP-gated cation channels of the P2 purinergic receptor family

pDNA:

plasmid DNA

PI3K:

phosphoinositide-3 kinase

PLGA:

poly(lactic-co-glycolic) acid copolymer

SOCS:

suppressors of cytokine signaling

STAT:

signal transducers and activators of transcription

sTNFR:

TNF soluble receptor (p55)

TGF-®:

transforming growth factor-beta

TIR:

toll/interleukin-1 receptor

TLR:

toll-like receptors

TNF-α:

tumor necrosis factor-alpha

References

  • Abraham, KE, D McMillen and KL Brewer (2004). “The effects of endogenous interleukin-10 on gray matter damage and pain behaviors following excitotoxic spinal cord injury in the mouse.” Neuroscience 124: 945–922.

    PubMed  CAS  Google Scholar 

  • Aderem, A and RJ Ulevitch (2000). “Toll-like receptors in the induction of the innate immune response.” Nature 406: 782–787.

    PubMed  CAS  Google Scholar 

  • Alexander, GM, MA Rijn, JJ van-Hilten, et al. (2005). “Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS.” Pain 116: 213–219.

    PubMed  CAS  Google Scholar 

  • Amiji, MM (2005). Polymeric Gene Delivery: Principles and Applications. Boca Raton, CRC Press.

    Google Scholar 

  • Aravalli, RN, PK Peterson and JR Lokensgard (2007). “Toll-like receptors in defense and damage of the central nerovus system.” J Neuroimmune Pharmacol 2: 297–312.

    PubMed  Google Scholar 

  • Asensio, VC and IL Campbell (1999). “Chemokines in the CNS: plurifunctional mediators in diverse states.” Trends Neurosci 22: 504–512.

    PubMed  CAS  Google Scholar 

  • Baetz, A, M Frey, K Heeg, et al. (2004). “Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells.” J Biol Chem 279(52): 54708–54715.

    PubMed  CAS  Google Scholar 

  • Banerjee, A and S Gerondakis (2007). “Coordinating TLR-activated signaling pathways in cells of the immune system.” Immunol Cell Biol 85(6): 420–424.

    PubMed  CAS  Google Scholar 

  • Benveniste, EN (1997). “Cytokine expression in the nervous system.” Immunology of the Nervous System. RW Keane and WF Hickey (eds.). New York, Oxford University Press: 419–459.

    Google Scholar 

  • Bethea, JR, H Nagashima, MC Acosta, et al. (1999). “Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats.” Neurotrauma 16: 851–863.

    CAS  Google Scholar 

  • Bianco, F, M Fumagalli, E Pravettoni, et al. (2005). “Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia.” Brain Res Rev 48: 144–156.

    PubMed  CAS  Google Scholar 

  • Biber, K, DJ Laurie, A Berthele, et al. (1999). “Expression and signalling of group I metabotropic glutamate receptors in astrocytes and microglia.” J Neurochem 72: 1671–1680.

    PubMed  CAS  Google Scholar 

  • Brewer, KL, JR Bethea and RP Yezierski (1999). “Neuroprotective effects of interleukin-10 following spinal cord injury.” Exp Neurol 159: 484–493.

    PubMed  CAS  Google Scholar 

  • Buechler, C, M Ritter, E Orso, et al. (2000). “Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli.” J Leukoc Biol 67(1): 97–103.

    PubMed  CAS  Google Scholar 

  • Cao, L and JA DeLeo (2008). “CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain.” Eur J Immunol 38: 448–458.

    PubMed  CAS  Google Scholar 

  • Castonguay, A, S Levesque and R Robitaille (2001). “Glial cells as active partners in synaptic functions.” Glial Cell Function. B Castellano-Lopez and M Nieto-Sampedro (eds.). Amsterdam, Elsevier Science B.V. 132: 227–240.

    Google Scholar 

  • Centers for Disease Control and Prevention (2006). Health, United States, 2006, with Special Feature on Pain. Centers for Disease Control and Prevention’s (CDC) National Center for Health Statistics: 559.

    Google Scholar 

  • Chacur, M, ED Milligan, EM Sloane, et al. (2004). “Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic administration: involvement of spinal cord glia, proinflammatory cytokines and nitric oxide.” Pain 108: 180–191.

    PubMed  CAS  Google Scholar 

  • Clark, AK, PK Yip, J Grist, et al. (2007). “Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain.” Proc Natl Acad Sci USA 104(25): 10655–10660.

    PubMed  CAS  Google Scholar 

  • Coull, JA, S Beggs, D Boudreau, et al. (2005). “BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain.” Nature 438: 923–925.

    Google Scholar 

  • Dansereau, MA, RD Gosselin, M Pohl, et al. (2008). “Spinal CCL2 pronociceptive action is no longer effective in CCR2 receptor antagonist-treated rats.” J Neurochem 106(2): 757–769.

    PubMed  CAS  Google Scholar 

  • DeLeo, JA, LS Sorkin and LR Watkins, Eds. (2007). Immune and Glial Regulation of Pain. Seattle, IASP Press.

    Google Scholar 

  • Dubovy, P, L Tuckova, R Jancalek, et al. (2007). “Increased invasion of ED-1 positive macrophages in both ipsi- and contralateral dorsal root ganglia following unilateral nerve injuries.” Neurosci Lett 427(2): 88–93.

    PubMed  CAS  Google Scholar 

  • Eaton, MJ, B Blits, MJ Ruitenberg, et al. (2002). “Amerlioration of chronic neuropathic pain after partial nerve injury by adeno-assocaited viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord.” Gene Ther 9: 1387–1395.

    PubMed  CAS  Google Scholar 

  • Faulkner, JR, JE Herrmann, MJ Woo, et al. (2004). “Reactive astrocytes protect tissue and preserve function after spinal cord injury.” J Neurosci 24(9): 2143–2155.

    PubMed  CAS  Google Scholar 

  • Ghosh, TK, DJ Mickelson, J Fink, et al. (2006). “Toll-like receptor (TLR) 2–9 agonists-induced cytokines and chemokines: I. Comparison with T cell receptor-induced responses.” Cell Immunol 243(1): 48–57.

    PubMed  CAS  Google Scholar 

  • Guo, L-H and HJ Schluesener (2007). “The innate immunity of the central nervous system in chronic pain: The role of Toll-like receptors.” Cell Mol Life Sci 64: 1128–1136.

    PubMed  CAS  Google Scholar 

  • Halassa MM, T Fellin and PG Haydon (2007). “The tripartite synapse: roles for gliotransmission in health and disease.” Trends Mol Med 13(2): 54–63.

    Google Scholar 

  • Hanisch, U-K (2002). “Microglia as a source and target of cytokines.” Glia 40: 140–155.

    PubMed  Google Scholar 

  • Hao, S, M Mata, JC Glorioso, et al. (2006). “HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain.” Mol Pain 2(6).

    Google Scholar 

  • Haydon, PG (2001). “GLIA: Listening and talking to the synapse.” Nat Rev Neurosci 2: 185–193.

    PubMed  CAS  Google Scholar 

  • Hedley, ML (2003). “Formulations containing poly-lactide-co-glycolide and plasmid DNA expression vectors.” Exper Opin Biol Ther 3(6): 903–910.

    CAS  Google Scholar 

  • Huang, D, F-D Shi, S Jung, et al. (2006). “The neural chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system.” FASEB J 20: 896–905.

    PubMed  CAS  Google Scholar 

  • Hucho, T and JD Levine (2007). “Signaling pathways in sensitization: toward a nociceptor cell biology.” Neuron 55(3): 365–376.

    PubMed  CAS  Google Scholar 

  • Husemann, J, JD Loike, R Anankov, et al. (2002). “Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system.” Glia 40(2): 195–205.

    PubMed  Google Scholar 

  • Hutchinson, MR, ST Bland, KW Johnson, et al. (2007). “Opioid-induced glial activation: Mechanisms of activation and implications for opioid analgesia, dependence and reward.” Sci World J 7(S2): 98–111.

    Google Scholar 

  • Iadarola, MJ, S Lee and AJ Mannes (1997). Gene transfer approaches to pain control. Molecular Neurobiology of Pain. D Borsook (ed.). Seattle, IASP Press: 337–360.

    Google Scholar 

  • Janeway, CA, P Travers, M Walport, et al. (2005). Immunobiology: The Immune System in Health and Disease. New York, NY, Garland Science Publishing.

    Google Scholar 

  • Ji, RR and MR Suter (2007). “p38 MAPK, microglial signaling, and neuropathic pain.” Mol Pain 3: 33.

    PubMed  Google Scholar 

  • Jooss, K and N Chirmule (2003). “Immunity to adenovirus and adeno-associated viral vectors: implication for gene therapy.” Gene Ther 10: 995–963.

    Google Scholar 

  • Jung, H, PT Toth, FA White, et al. (2008). “Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons.” J Neurochem 104(1): 254–263.

    PubMed  CAS  Google Scholar 

  • Kaplitt, MG and MJ During (2006). Gene Therapy in the Central Nervous System: From Bench to Bedside. San Diego, CA, Elsevier, Inc.

    Google Scholar 

  • Kawai, T and S Akira (2007). “Signaling to NF-kappaB by Toll-like receptors.” Trends Mol Med 13(11): 460–469.

    PubMed  CAS  Google Scholar 

  • Kawasaki, Y, ZZ Xu, X Wang, et al. (2008a). “Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain.” Nat Med 14(3): 331–336.

    PubMed  CAS  Google Scholar 

  • Kawasaki, Y, L Zhang, J-K Cheng, et al. (2008b). “Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1b, interleukin-6, and tumor necrosis factor-a in regulating syntapic and neuronal activity in the superficial spinal cord.” J Neurosci 28(20): 5189–5194.

    PubMed  CAS  Google Scholar 

  • Kreutzberg, GW (1996). “Microglia: a sensor for pathological events in the CNS.” Trends Neurosci 19: 312–318.

    PubMed  CAS  Google Scholar 

  • Krieg, AM (2002). “CpG motifs in bacterial DNA and thier immune effects.” Annu Rev Immunol 20: 709–760.

    PubMed  CAS  Google Scholar 

  • Latz, E, A Schoenemeyer, A Visintin, et al. (2004). “TLR9 signals after translocating from the ER to CpG DNA in the lysosome.” Nat Immunol 5: 190–198.

    PubMed  CAS  Google Scholar 

  • Laughlin, TM, JR Bethea, RP Yezierski, et al. (2000). “Cytokine involvement in dynorphin-induced allodynia.” Pain 84: 159–167.

    PubMed  CAS  Google Scholar 

  • Le Feuvre, R, D Brough and N Rothwell (2002). “Extracellular ATP and P2X7 receptors in neurodegeneration.” Eur J Pharmacol 447: 261–269.

    PubMed  Google Scholar 

  • Ledeboer, AM, BM Jekich, EM Sloane, et al. (2007). “Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats.” Brain Behav Immun 21(5): 686–698.

    PubMed  CAS  Google Scholar 

  • Ledeboer, A, A Wierinckx, JGJM Bol, et al. (2003). “Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE.” J Neuroimmunol 136: 94–103.

    PubMed  CAS  Google Scholar 

  • Lindia, JA, E McGowan, N Jochnowitz, et al. (2005). “Induction of CX3CL1 expression in astocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain.” J Pain 6: 434–438.

    PubMed  CAS  Google Scholar 

  • Lingnau, M, C Hoflich, HD Volk, et al. (2007). “Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes.” Hum Immunol 68(9): 730–738.

    PubMed  CAS  Google Scholar 

  • Liu, Q and DA Muruve (2003). “Molecular basis of the inflammatory response to adenovirus vectors.” Gene Ther 10: 935–940.

    PubMed  CAS  Google Scholar 

  • Loeser, JD (2006). “Pain as a disease.” Pain. F Cervero and TS Jensen (eds.). Amsterdam, Elsevier B.V. 81: 11–20.

    Google Scholar 

  • Mannes, AJ, RM Caudle and BC O'Connell, Iadarola, MJ (1998). “Adenoviral gene transfer to spinal cord neurons: intrathecal vs. intraparenchymal administration.” Brain Res 793: 1–6.

    PubMed  CAS  Google Scholar 

  • Mata, M, S Hao and DJ Fink (2008). “Gene therapy directed at the neuroimmune component of chronic pain with particular attention to the role of TNF alpha.” Neurosci Lett 437(3): 209–213.

    PubMed  CAS  Google Scholar 

  • McMahon, SB, WBJ Cafferty and F Marchand (2005). “Immune and glial cell factors as pain mediators and modulators.” Exp Neurol 192: 444–462.

    PubMed  CAS  Google Scholar 

  • McMenamin, PG, RJ Wealthall, M Deverall, et al. (2003). “Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy.” Cell Tissue Res 313: 259–269.

    PubMed  Google Scholar 

  • Medzhitov, R and C Janeway, Jr. (2000). “The Toll receptor family and microbial recognition.” Trends Microbiol 8(10): 452–456.

    PubMed  CAS  Google Scholar 

  • Milligan, ED, SJ Langer, EM Sloane, et al. (2005a). “Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, Interleukin-10.” Eur J Neurosci 21: 2136–2148.

    PubMed  Google Scholar 

  • Milligan, ED, A Ledeboer, EM Sloane, et al. (2007). “Glially driven enhancement of pain and its control by anti-inflammatory cytokines.” Immune and Glial Regulation of Pain. JA DeLeo, LS Sorkin and LR Watkins (eds.). Seattle, IASP Press: 319–337.

    Google Scholar 

  • Milligan, ED, EM Sloane, SJ Langer, et al. (2005b). “Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10.” Mol Pain 1: 9–22.

    PubMed  Google Scholar 

  • Milligan, ED, EM Sloane, SJ Langer, et al. (2006a). “Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain.” Pain 126: 294–308.

    PubMed  CAS  Google Scholar 

  • Milligan, ED, RG Soderquist, SM Malone, et al. (2006b). “Intrathecal polymer-based interleukin-10* gene delivery for neuropathic pain.” Neuron Glia Biol 2: 293–308.

    PubMed  Google Scholar 

  • Milligan, ED, V Zapata, M Chacur, et al. (2004). “Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats.” Eur J Neurosci 20: 2294–2302.

    PubMed  CAS  Google Scholar 

  • Milligan, ED, V Zapata, D Schoeniger, et al. (2005c). “An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine.” Eur J Neurosci 22: 2775–2782.

    PubMed  CAS  Google Scholar 

  • Moore, KW, R de Waal Malefyt, RL Coffman, et al. (2001). “Interleukin-10 and the interleukin-10 receptor.” Annu Rev Immunol 19: 683–765.

    PubMed  CAS  Google Scholar 

  • Morin, N, SA Owolabi, MW Harty, et al. (2007). “Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve.” J Neuroimmunol 184(1–2): 164–171.

    PubMed  CAS  Google Scholar 

  • Murphy, S, Ed. (1993). Astrocytes: Pharmacology and Function. San Diego, Academic Press.

    Google Scholar 

  • Natarajan, M, K-M Lin, RC Hsueh, et al. (2006). “A global analysis of cross-talk in a mammalian cellular signalling network.” Nat Cell Biol 8(6): 571–580.

    PubMed  CAS  Google Scholar 

  • Nguyen, MD, JP Julien and S Rivest (2002). “Innate immunity: the missing link in neuroprotection and neurodegeneration.” Nat Rev Neurosci 3: 216–227.

    PubMed  CAS  Google Scholar 

  • Ohtori, S, K Takahashi, H Moriya, et al. (2004). “TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord.” Spine 29: 1082–1088.

    PubMed  Google Scholar 

  • Olson, JK and SD Miller (2004). “Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs.” J Immunol 173: 3916–3924.

    PubMed  CAS  Google Scholar 

  • O'Neill, LA and AG Bowie (2007). “The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.” Nat Rev Immunol 7(5): 353–364.

    PubMed  Google Scholar 

  • Pack, DW, AS Hoffman, S Pun, et al. (2005). “Design and development of polymers for gene delivey.” Nat Rev Drug Dis 4: 581–593.

    CAS  Google Scholar 

  • Plunkett, JA, C-G Yu, JM Easton, et al. (2001). “Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat.” Exp Neurol 168: 144–154.

    PubMed  CAS  Google Scholar 

  • Pocock, JM and H Kettenmann (2007). “Neurotransmitter receptors on microglia.” Trends Neurosci 30(10): 527–535.

    PubMed  CAS  Google Scholar 

  • Ransohoff, RM, L Liu and AE Cardona (2007). “Chemokines and chemokine receptors: multipurpose players in neuroinflammation.” Int Rev Neurobiol 82: 187–204.

    PubMed  CAS  Google Scholar 

  • Roelofs, MF, WC Boelens, LA Joosten, et al. (2006). “Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis.” J Immunol 176(11): 7021–7027.

    PubMed  CAS  Google Scholar 

  • Rossi, D and A Zlotnik (2000). “The biology of chemokines and their receptors.” Annu Rev Immunol 18: 217–242.

    PubMed  CAS  Google Scholar 

  • Sarrias, MR, J Gronlund, O Padilla, et al. (2004). “The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system.” Crit Rev Immunol 24(1): 1–37.

    PubMed  CAS  Google Scholar 

  • Scholz, J and CJ Woolf (2007). “The neuropathic pain triad: neurons, immune cells, and glia.” Nat Neurosci 10(11): 1361–1368.

    PubMed  CAS  Google Scholar 

  • Sloane, EM, SJ Langer, BM Jekich, et al. (2009). “Immunological priming potentiates non-viral anti-inflammatory gene therapy treatment of neuropathic pain.” Gene Therapy, submitted.

    Google Scholar 

  • Sloane, EM, SJ Langer, ED Milligan, et al. (2006). A novel anti-inflammatory cytokine based non-viral gene therapy: Controlling neuropathic pain and beyond. Immunology 2006, Boston, MA, The American Association of Immunologists.

    Google Scholar 

  • Stellwagen, D and RC Malenka (2006). “Synaptic scaling mediated by glial TNF-alpha.” Nature 440: 1054–1059.

    PubMed  CAS  Google Scholar 

  • Sulahian, TH, P Hogger, AE Wahner, et al. (2000). “Human monocytes express CD163, which is upregulated by IL-10 and identical to p155.” Cytokine 12(9): 1312–1321.

    PubMed  CAS  Google Scholar 

  • Sung, CS, ZH Wen, WK Chang, et al. (2005). “Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord.” J Neurochem 94(3): 742–752.

    PubMed  CAS  Google Scholar 

  • Suzuki, T, I Hide, K Ido, et al. (2004). “Production and release of neuroprotective tumor necrosis factor by P2X7 receptor activated microglia.” J Neurosci 24: 1–7.

    PubMed  CAS  Google Scholar 

  • Svensson, CI, B Fitzsimmons, S Azizi, et al. (2005). “Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization.” J Neurochem 92: 1508–1520.

    PubMed  CAS  Google Scholar 

  • Svensson CI, M Marsala, A Westerlund, et al. (2003). “Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing.” J Neurochem 86(6): 1534–1544.

    Google Scholar 

  • Sweitzer, SM, WF Hickey, MD Rutkowski, et al. (2002). “Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potenital relationship to neuropathic pain.” Pain 100: 163–170.

    PubMed  Google Scholar 

  • Tanga, FY, N Nutile-McMenemy and JA DeLeo (2005). “The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy.” PNAS 102: 16.

    Google Scholar 

  • Taylor, DL, LT Diemel, ML Cuzner, et al. (2002). “Activation of group II glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with peptides upregulated Alzheimer's disease.” J Neurochem 82: 1179–1191.

    PubMed  CAS  Google Scholar 

  • Taylor, DL, LT Diemel and JM Pocock (2003). “Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity.” J Neurosci 23: 2150–2160.

    PubMed  CAS  Google Scholar 

  • Taylor, DL, F Jones, ES Kubata, et al. (2005). “Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand.” J Neurosci 25: 2952–2964.

    PubMed  CAS  Google Scholar 

  • Tsuda, M (2003). “P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury.” Nature 424: 778–783.

    PubMed  CAS  Google Scholar 

  • Uceyler, N, R Valenza, M Stock, et al. (2006). “Reduced levels of antiinflammatory cytokines in patients with chronic widespread pain.” Arthrit Rheum 54: 2656–2664.

    Google Scholar 

  • van Gaal, EVB, WE Hennink, DJA Crommelin, et al. (2006). “Plasmid engineering for controlled and sustained gene expression for non-viral gene therapy.” Pharm Res 23(6): DOI: 10.1007/s11095-006-0164-2.

    Google Scholar 

  • van Noort, JM (2008). “Stress proteins in CNS inflammation.” J Pathol 214(2): 267–275.

    PubMed  Google Scholar 

  • Wagner, H (2004). “The immunobiology of the TLR9 subfamily.” Trends Immunol 25(7): 381–386.

    PubMed  CAS  Google Scholar 

  • Watkins, LR, ED Milligan and SF Maier (2001). “Spinal cord glia: new players in pain.” Pain 93: 201–205.

    PubMed  CAS  Google Scholar 

  • Watkins, LR, J Wieseler-Frank, ED Milligan, et al. (2006). “Contribution of glia to pain processing in health and disease.” Handbook of Clinical Neurology. F Cervero and TS Jensen (eds.). Amsterdam, Elsevier. 81: 309–323.

    Google Scholar 

  • White, FA, SK Bhangoo and RD Miller (2005). “Chemokines: Integrators of pain and inflammation.” Nature Rev 4: 834–844.

    CAS  Google Scholar 

  • White, FA, H Jung and RJ Miller (2007). “Chemokines and the pathophysiology of neuropathic pain.” Proc Natl Acad Sci USA 104(51): 20151–20158.

    PubMed  CAS  Google Scholar 

  • Wieseler-Frank, J, BM Jekich, JH Mahoney, et al. (2007). “A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus.” Brain Behav Immun 21(5): 711–718.

    PubMed  CAS  Google Scholar 

  • Wilms, H, P Rosenstiel, J Sievers, et al. (2003). “Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease.” FASEB J 17(3): 500–502.

    PubMed  CAS  Google Scholar 

  • Woolf, CJ and Q Ma (2007). “Nociceptors – noxious stimulus detectors.” Neuron 55(3): 353–364.

    PubMed  CAS  Google Scholar 

  • Woolf, CJ and RJ Mannion (1999). “Neuropathic pain: aetiology, symptoms, mechanisms, and management.” Lancet 353(9168): 1959–1964.

    PubMed  CAS  Google Scholar 

  • Wu, CL, MG Garry, RA Zollo, et al. (2001a). “Gene therapy for the management of pain: Part I: Methods and strategies.” Anesthes 94: 1119–1132.

    CAS  Google Scholar 

  • Wu CL,, MG Garry, RA Zollo, et al. (2001b). “Gene therapy for the management of pain. Part II: Molecular targets.” Anesthes 95: 216–240.

    Google Scholar 

  • Wu, Z, J Zhang and H Nakanishi (2005). “Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation.” J Neuroimmunol 167(1–2): 90–98.

    PubMed  CAS  Google Scholar 

  • Yao, MZ, JF Gu, JH Wang, et al. (2002a). “Interleukin-2 gene therapy of chronic neuropathic pain.” Neuroscience 112(2): 409–416.

    PubMed  CAS  Google Scholar 

  • Yao, MZ, JF Gu, HJ Wang, et al. (2003). “Adenovirus-mediated interleukin-2 gene therapy of nociception.” Gene Ther 10: 1392–1399.

    PubMed  CAS  Google Scholar 

  • Yao, MZ, JH Wang, JF Gu, et al. (2002b). “Interleukin-2 gene has superior antinociceptive effects when delivered intrathecally.” Clin Neurosci Neuropathol 13(6): 791–794.

    CAS  Google Scholar 

  • Yi, A-K, J-G Yoon, S-J Yeo, et al. (2002). “Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: Central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th1 response.” J Immunol 168: 4711–4720.

    PubMed  CAS  Google Scholar 

  • Yoshimura, A, HM Ohishi, D Aki, et al. (2004). “Regulation of TLR signaling and inflammation by SOCS family proteins.” J Leukoc Biol 75(3): 422–427.

    PubMed  CAS  Google Scholar 

  • Yu, C-G, CA Fairbanks, GL Wilcox, et al. (2003). “Effects of agmatine, interleukin-10 and cyclosporin on spontaneous pain behavior following excitotoxic spinal cord injury in rats.” J Pain 4: 129–140.

    PubMed  CAS  Google Scholar 

  • Zhang, J and Y De Koninck (2006). “Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury.” J Neurochem 97(3): 772–783.

    PubMed  CAS  Google Scholar 

  • Zhang, J, XQ Shi, S Echeverry, et al. (2007). “Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain.” J Neurosci 27(45): 12396–12406.

    PubMed  CAS  Google Scholar 

  • Zimmermann, M (2001). “Pathobiology of neuropathic pain.” Eur J Pharmacol 429: 23–37.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Milligan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milligan, E.D., Soderquist, R.G., Mahoney, M.J. (2009). Microglia, Cytokines and Pain. In: Malcangio, M. (eds) Synaptic Plasticity in Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0226-9_17

Download citation

Publish with us

Policies and ethics