Skip to main content

Leaf C3 Photosynthesis in silico: Integrated Carbon/Nitrogen Metabolism

  • Chapter
Photosynthesis in silico

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 29))

A computer model of C3 photosynthesis comprising light reactions, electron-proton transport, enzymatic reactions and regulatory functions is presented as a system of differential budget equations for intermediate compounds. Carbon and nitrite reduction systems are linked assuming that nitrite reduction is the dominant proton-coupled alternative electron transport pathway compensating for ATP consumption by starch synthesis and other non-photosynthetic processes. The principal theoretical hypothesis is that the carbon skeletons for the freshly synthesized amino acids are partitioned from the pool of phosphoglyceric acid (PGA) before its reduction in photosynthesis. Consequently, the rate of nitrite reduction is controlled by ferredoxin reduction and PGA levels. The latter simultaneously controls the rate of starch synthesis — the major alternative ATP consumer linking nitrite reduction with starch synthesis. The model reproduces light and CO2 response curves of photosynthesis, chlorophyll fluorescence and 810 nm transmittance signals during steady state, as well as during induction and oscillations. The model explains the integral Nitrogen/Carbon (N/C) ratios of plant tissues and predicts that the availability of nitrogen may limit the photosynthetic rate in natural communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond B 355: 1419–1431

    Article  CAS  Google Scholar 

  • Badger MR and Lorimer GH (1981) Interaction of sugar phosphates with the catalytic site of ribulose-1,5-bisphosphate carboxylase. Biochemistry 20 (8): 2219–2225

    Article  PubMed  CAS  Google Scholar 

  • Bendall DS and Manasse R (1995) Cyclic phosphorylation and electron transport. Biochim Biophys Acta 1229: 23–38

    Article  Google Scholar 

  • Brooks A and Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5- bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397–406

    Article  CAS  Google Scholar 

  • Brown HT and Escombe ELS (1900) Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Phil Trans R Soc Lond B 193: 223–291

    Article  CAS  Google Scholar 

  • Carrillo N and Ceccarelli EA (2003) Open questions in ferredoxin-NADP+reductase catalytic mechanism. Eur J Biochem 270: 1900–1915

    Article  PubMed  CAS  Google Scholar 

  • Chartier P (1966) Etude theorique de l'assimilation brute de la feuille. Ann Physiol Veg 8: 167–195

    CAS  Google Scholar 

  • Cleland WW (1963) The kinetic of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 767: 432–443

    Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G and Smith JL (2006) Transmembrane traffic in the cytochrome b 6 f complex. Annu Rev Biochem 75: 769–790

    Article  PubMed  CAS  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A and Kramer DM (2001) Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into Δψ and ApH by ionic strength. Biochemistry 40: 1226–1237

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul C, Garmier M, Noctor G, Mathieu C, Chetrit P, Foyer C and De Paepe R (2003) Leaf mitochondria modulate whole cell homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15: 1212–1226

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul C, Lelarge C, Prioul J-L, De Paepe R and Foyer CH (2005) Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 139: 64–78

    Article  PubMed  CAS  Google Scholar 

  • Eichelmann H and Laisk A (1999) Ribulose-1,5-bisphosphate carboxylase/oxygenase content, assimi-latory charge and mesophyll conductance in leaves. Plant Physiol 119: 179–189

    Article  PubMed  CAS  Google Scholar 

  • Eichelmann H and Laisk A (2000) Cooperation of photosys-tems II and I in leaves as analysed by simultaneous measurements of chlorophyll fluorescence and transmittance at 800 nm. Plant Cell Physiol 41: 138–147

    PubMed  CAS  Google Scholar 

  • Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Mänd P, Kull O and Laisk A (2005) Adjustment of leaf photosynthesis to shade in a natural canopy: Reallocation of nitrogen. Plant Cell Environ 28: 389–401

    Article  CAS  Google Scholar 

  • Eichelmann H, Talts E, Oja V, Rasulov B, Padu E and Laisk A (2008) Rubisco activity is related to photosystem I in leaves. In: Allen JF, Gantt E, Golbeck JH and Osmond B (eds) Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis, pp 853–856. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Eicks M, Maurino VKS, Flügge U-I and Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and plastidic pentose phosphate pathways in plants. Plant Physiol 128: 512–522

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD and Von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB and Ziegler H (eds) Physiological Plant Ecology. Encyclopedia of Plant Physiology, New Series Vol. 12B, pp 549–588. Springer, Berlin

    Google Scholar 

  • Farquhar GD, Von Caemmerer S and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  • Feniouk BA, Mulkidjanian AY and Junge W (2005) Proton slip in the ATP synthase of Rhodobacter capsulatus: Induction, proton conduction, and nucleotide dependence. Biochim Biophys Acta 1706: 184–194

    Article  PubMed  CAS  Google Scholar 

  • Flügge U-I (1991) Metabolite translocators of the chloro-plast envelope. Annu Rev Plant Physiol Plant Mol Biol 42: 129–144

    Article  Google Scholar 

  • Foyer CH, Parry M and Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54: 585–593

    Article  PubMed  CAS  Google Scholar 

  • Giersch C (1994) Photosynthetic Oscillations: Observations and Models. Comments on Theoretical Biology, pp 339– 364. Overseas Publishers Association, Amsterdam

    Google Scholar 

  • Giersch C, Sivak MN and Walker DA (1991) A mathematical skeleton model of photosynthetic oscillations. Proc R Soc Lond B 245: 77–83

    Article  CAS  Google Scholar 

  • Hahn BD (1987) A mathematical model of photorespiration and photosynthesis. Ann Bot 60: 157–169

    CAS  Google Scholar 

  • Heldt HW, Chon CJ, Maronde D, Herold A, Stankovic ZS, Walker DA, Kraminer A, Kirk MR and Heber U (1977) Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol 59: 1146–1155

    Article  PubMed  CAS  Google Scholar 

  • Herzog B, Stitt M and Heldt HW (1984) Properties of the cytosolic fructose 1,6-bisphosphatase. Plant Physiol 75: 561–565

    Article  PubMed  CAS  Google Scholar 

  • Horton P and Ruban AV (1992) Regulation of photosystem II. Photosynth Res 34: 375–385

    Article  CAS  Google Scholar 

  • Huber SC (1989) Biochemical mechanism for regulation of sucrose accumulation in leaves during photosynthesis. Plant Physiol 91: 656–662

    Article  PubMed  CAS  Google Scholar 

  • Ivanova H, Keerberg O and Pärnik T (1993) Influence of oxygen concentration on the rates of carbon fluxes in the biochemical system of CO2 assimilation. Proc Estonian Acad Sci Chem 42: 185–197

    CAS  Google Scholar 

  • Johnson G (2003) Thiol regulation of the thylakoid electron transport chain — a missing link in the regulation of photosynthesis. Biochemistry 42: 3040–3044

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB, Chollet R and Ogren WL (1983) Binding of phosphorylated effectors by active and inactive forms of ribulose-1,5-bisphosphate carboxylase. Biochemistry 22: 3410–3418

    Article  CAS  Google Scholar 

  • Keerberg O, Keerberg H, Pärnik T, Viil J and Vark E (1983) The metabolism of photosynthetically assimilated 14CO2 under different concentrations of carbon dioxide. Int J Appl Radiat Isot 34 (5): 861–864

    Article  CAS  Google Scholar 

  • Kirchhoff H, Schöttler MA, Maurer J and Weis E (2004) Plastocyanin redox kinetics in spinach chloroplasts: Evidence for disequilibrium in the high potential chain. Biochim Biophys Acta 1659: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Laisk A (1970) A model of leaf photosynthesis and photores-piration. In: Shetlik I (ed) Prediction and Measurement of Photosynthetic Productivity, pp 295–306. Centre for Agricultural Publishing and Documentation, Wageningen

    Google Scholar 

  • Laisk A (1977a) Kinetics of Photosynthesis and Pho-torespiration in C3 Plants. Publishing House Nauka, Moscow

    Google Scholar 

  • Laisk A (1977b) Modelling of the closed Calvin cycle. In: Unger K (ed) Biophysikalische Analyse pflanzlicher Sys-teme, pp 175–182. VEB Fischer Verlag, Jena, DDR

    Google Scholar 

  • Laisk A and Edwards GE (2000) A mathematical model of C4 photosynthesis: The mechanism of concentrating CO2 in NADP-malic enzyme type species. Photosynth Res 66: 199–224

    Article  PubMed  CAS  Google Scholar 

  • Laisk A and Eichelmann H (1989) Towards understanding oscillations: A mathematical model of the biochemistry of photosynthesis. Phil Trans R Soc Lond 323: 369–384

    Article  CAS  Google Scholar 

  • Laisk A and Laarin P (1983) Feedback regulation of the potential rate of photosynthesis. In: Margna U (ed) Regulation of Plant Growth and Metabolism, pp 135–150 (in Russian). Publishing House Valgus, Tallinn

    Google Scholar 

  • Laisk A and Oja V (1972) Positive Feedback and Rhyt-mic Phenomena in the Pentosephosphate Cycle of Photosynthesis. Abstracts of the IV International Biophysical Congress, Sections XVI–XXV. Publishing House Nauka, Moscow

    Google Scholar 

  • Laisk A and Oja V (1998) Dynamic Gas Exchange of Leaf Photosynthesis. Measurement and Interpretation. CSIRO Publishing, Canberra

    Google Scholar 

  • Laisk A and Oja V (2000a) Alteration of PSII properties with non-photochemical excitation quenching. Phil Trans R Soc Lond B 355: 1405–1418

    Article  CAS  Google Scholar 

  • Laisk A and Oja V (2000b) Electron transport through pho-tosystem II in leaves during light pulses: Acceptor resistance increases with nonphotochemical excitation quenching. Biochim Biophys Acta 1460: 255–267

    Article  CAS  Google Scholar 

  • Laisk A and Walker DA (1986) Control of phosphate turnover as a rate-limiting factor and possible cause of oscillations in photosynthesis: A mathematical model. Proc R Soc Lond B 227: 281–302

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Eatherall A and Walker DA (1989) A mathematical model of the carbon metabolism in photosynthesis. Difficulties in explaining oscillations by fructose 2,6-bisphosphatase. Proc R Soc Lond B 237: 389–415

    Article  CAS  Google Scholar 

  • Laisk A, Oja V, Walker D and Heber U (1992) Oscillations in photosynthesis and reduction of Photosystem I acceptor side in sunflower leaves. Functional Cyt b/f-PSI-FNR complexes. Photosynthetica 27 (4): 465–479

    CAS  Google Scholar 

  • Laisk A, Oja V, Rasulov B, Eichelmann H and Sumberg A (1997) Quantum yields and rate constants of photochemical and nonphotochemical excitation quenching. Experiment and model. Plant Physiol 115: 803–815

    PubMed  CAS  Google Scholar 

  • Laisk A, Oja V, Rasulov B, Rämma H, Eichelmann H, Kas-parova I, Pettai H, Padu E and Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ 25: 923–943

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H and Oja V (2006a) C3 photosynthesis in silico. Photosynth Res 90: 45–66

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Rasulov B and Rämma H (2006b) Photosystem II cycle and alternative electron flow in leaves. Plant Cell Physiol 47: 972–983

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E and Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48: 1575–1588

    Article  PubMed  CAS  Google Scholar 

  • Lascano HR, Casano LM, Martin M and Sabater B (2003) The activity of the chloroplastic Ndh Complex is regulated by phosphorylation of the NDH-F subunit. Plant Physiol 132: 256–262

    Article  PubMed  CAS  Google Scholar 

  • Noctor G and Foyer CH (1998) A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49: 1895–1908

    Article  CAS  Google Scholar 

  • Oja V (1985) Estimation of pH and carbonic anhydrase activity in intact leaves on the basis of the kinetics of CO2 dissolution. In: Viil J, Grishina GS and Laisk A (eds) Kinetics of Photosynthetic Carbon Metabolism in C3 Plants, pp 104–108. Publishing House Valgus, Tallinn

    Google Scholar 

  • Oja V and Laisk A (2000) Oxygen yield from single turnover flashes in leaves: Non-photochemical excitation quenching and the number of active PSII. Biochim Biophys Acta 1460: 291–301

    Article  PubMed  CAS  Google Scholar 

  • Oja V, Eichelmann H, Peterson RB, Rasulov B and Laisk A (2003) Decyphering the 820 nm signal: Redox state of donor side and quantum yield of photosystem I in leaves. Photosynth Res 78: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Oja V, Bichele I, Hüve K, Rasulov B and Laisk A (2004) Reductive titration of photosystem I and differential extinction coefficient of P700+ at 810–950 nm in leaves. Biochim Biophys Acta 1658: 225–234

    Article  PubMed  CAS  Google Scholar 

  • Pärnik T and Keerberg O (1995) Decarboxylation of primary and end products of photosynthesis at different oxygen concentrations. J Exp Bot 46: 1439–1447

    Google Scholar 

  • Peltier G and Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53: 523–550

    Article  PubMed  CAS  Google Scholar 

  • Penning de Vries FWT, Brunsting AHM and Van Laar HH (1974) Products, requirements and efficiency of biosynthesis. A quantitative approach. J Theor Biol 45: 339–377

    Article  PubMed  CAS  Google Scholar 

  • Pettai H, Oja V, Freiberg A and Laisk A (2005) Photosyn-thetic activity of far-red light in green plants. Biochim Biophys Acta 1708: 311–321

    Article  PubMed  CAS  Google Scholar 

  • Pettersson G and Ryde-Pettersson U (1988) A mathematical model of the Calvin photosynthesis cycle. Eur J Biochem 175: 661–672

    Article  PubMed  CAS  Google Scholar 

  • Pietsch S, Hasenauer H and Thornton PE (2005) BGC-model parameters for tree species growing in central European forests. Forest Ecol Manag 211: 264–295

    Article  Google Scholar 

  • Porcar-Castell A, Bäck J, Juurola E and Hari P (2006) Dynamics of the energy flow through photosystem II under changing light conditions: A model approach. Funct Plant Biol 33: 229–239

    Article  CAS  Google Scholar 

  • Preiss J, Robinson S, Spilatro S and McNamara K (1985) Starch synthesis and its regulation. In: Heath RL, Preiss J (eds) Regulation of Carbon Partitioning in Photosyn-thetic Tissue, pp 1–26. University of California Press, Riverside, CA

    Google Scholar 

  • Rabinowitch E (1951) Photosynthesis and Related Processes, Vol. II, Part I. Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch E (1953) Photosynthesis II. Publishing House of Foreign Liter, Moscow (in Russian)

    Google Scholar 

  • Rees D, Noctor G, Ruban AV, Crofts J, Young A and Horton P (1992) pH dependent chlorophyll fluorescence quenching in spinach thylakoids from light treated or dark adapted leaves. Photosynth Res 31: 11–19

    Article  CAS  Google Scholar 

  • Rich, PR (1991) The osmochemistry of electron-transfer complexes. Biosci Rep 11: 539–571

    Article  PubMed  CAS  Google Scholar 

  • Rumberg B, Schubert K, Strelow F, Tran-Anh T (1990) The H+/AT P coupling ratio at the H+-ATP-synthase of spinach chloroplasts is four. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol. III, pp 125–128. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Ryde-Pettersson U (1991) A theoretical treatment of damped oscillations in biochemical reaction systems with application to the photosynthetic oscillations. Dissertation, University of Lund, Department of Biochemistry

    Google Scholar 

  • Sazanov LA, Burrows P and Nixon PJ (1995) Presence of a large protein complex containing the ndhK gene product and possessing NADH-specific dehydrogenase activity in thylakoid membranes of higher plant chloroplasts. In: Mathis P (ed) Photosynthesis. From Light to Biosphere, Vol. 2., pp 705–708. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Scheibe R (1987) NADP+-malate dehydrogenase in C3-plants: Regulation and role of a light-activated enzyme. Physiol Plantarum 71: 393–400

    Article  CAS  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H and Müller DJ (2000) Proton powered turbine of a plant motor. Nature 405: 418–419

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Stitt M, Heineke D, Gerhardt R, Raschke K and Heldt HW (1986) Limitation of photosynthesis by carbon metabolism. II. O2-intensitive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiol 81: 1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1987) Fructose 2,6-bisphosphate and plant carbohydrate metabolism. Plant Physiol 84: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Tetlow IJ, Morell MK and Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55: 2131– 2145

    Article  PubMed  CAS  Google Scholar 

  • Viil J, Laisk A, Oja V and Pärnik T (1972) Positive influence of oxygen on photosynthesis. Doklady AN SSSR (Proc Acad Sci USSR) 204 (5): 1269–1271 (in Russian)

    CAS  Google Scholar 

  • Viil J, Laisk A, Oja V and Pärnik T (1977) Enhancement of photosynthesis caused by oxygen under saturating irradiance and high CO2 concentrations. Photosynthetica 11 (3): 251–259

    CAS  Google Scholar 

  • Von Caemmerer S (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Australia

    Google Scholar 

  • Walker DA (1992) Concerning oscillations. Photosynth Res 34: 387–395

    Article  CAS  Google Scholar 

  • Winter H, Robinson DG and Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191: 180–190

    Article  CAS  Google Scholar 

  • Winter H, Robinson DG and Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193: 530–535

    Article  CAS  Google Scholar 

  • Yin X, Van Oijen M and Schapendonk AHCM (2004) Extension of a biochemical model for the generalized stoi-chiometry of electron transport limited C3 photosynthesis. Plant Cell Environ 27: 1211–1222

    Article  CAS  Google Scholar 

  • Yin X, Harbinson J and Struik PC (2006) Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. Plant Cell Environ 29: 1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Zhu X-G, Govindjee, Baker NR, deSturler E, Ort DR and Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 223: 114–133

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laisk, A., Eichelmann, H., Oja, V. (2009). Leaf C3 Photosynthesis in silico: Integrated Carbon/Nitrogen Metabolism. In: Laisk, A., Nedbal, L., Govindjee (eds) Photosynthesis in silico . Advances in Photosynthesis and Respiration, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9237-4_13

Download citation

Publish with us

Policies and ethics