Skip to main content

Computable Error Indicators for Approximate Solutions of Elliptic Problems

  • Chapter
ECCOMAS Multidisciplinary Jubilee Symposium

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 14))

  • 1048 Accesses

The paper is concerned with computable indicators of approximation errors. With the paradigm of a linear elliptic problem we discuss new error indicators that can be used in mesh-adaptive numerical methods. Indicators of the first type follow from functional a posteriori estimates. They indicate the distribution of errors in the whole computational domain. Another group of indicators is focused on the so-called goal-oriented error functionals typically associated with some sub-domains where the accuracy of an approximate solution is especially important. Usually, indicators of this type use solutions of adjoint boundary value problems. We obtain a new exact form of the goal-oriented linear functional with the help of which derive two new error indicators. They do not exploit extra regularity of adjoint solutions and special properties of the respective approximations (as, e.g., superconvergence). Finally, the paper suggests an error indicator, which is based not on finite element approximations of adjoint problems but on modifications of solutions known for some “etalon” domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Achdou, C. Bernardi and F. Coquel,A priori and a posteriori analysis of finite volume discretizations of Darcy's equations,Numer. Math. 96, pp. 17–42 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Agouzal,On the saturation assumption and hierarchical a posteriori error estimator,Comput. Meth. Appl. Math., 1 pp. 125–131 (2001)

    MathSciNet  Google Scholar 

  3. M. Ainsworth,A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems in thin domains,Numer. Math., 80, pp. 325–362 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Ainsworth,Robust a posteriori error estimation for nonconforming finite element approximation,SIAM J. Numer. Anal., 42, pp. 2320–2341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Ainsworth,A posteriori error estimation for discontinuous Galerkin finite element approximation,SIAM J. Numer. Anal., 45, 4, pp. 1777–1798 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Ainsworth and J. T. Oden,A posteriori error estimation in the finite element method,Numer. Math., 60, pp. 429–463 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Wiley, New York (2000)

    MATH  Google Scholar 

  8. I. Babuška and W. C. Rheinboldt,A-posteriori error estimates for the finite element method,Int. J. Numer. Meth. Eng. 12, pp. 1597–1615 (1978)

    Article  MATH  Google Scholar 

  9. I. Babuška and W. C. Rheinboldt,Error estimates for adaptive finite element computations,SIAM J. Numer. Anal. 15, pp. 736–754 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Babuška and R. Rodriguez,The problem of the selection of an a posteriori error indicator based on smoothing techniques,Int. J. Numer. Meth. Eng. 36, pp. 539–567 (1993)

    Article  MATH  Google Scholar 

  11. I. Babuška and T. Strouboulis, The finite element method and its reliability, Oxford University Press, New York (2001)

    Google Scholar 

  12. W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations, Birkhäuser, Berlin (2003)

    MATH  Google Scholar 

  13. R. Becker and R. Rannacher,A feed—back approach to error control in finite element methods: Basic approach and examples,East—West J. Numer. Math. 4, pp. 237–264 (1996)

    MATH  MathSciNet  Google Scholar 

  14. J. H. Brandts,Superconvergence and a posteriori error estimation for triangular mixed finite elements,Numer. Math., 68, pp. 311–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Carstensen,Quasi-interpolation and a posteriori error analysis of finite element methods,Math. Model. Numer. Anal., 33, pp. 6, 1187–1202 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Carstensen and S. Bartels.Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I: Low order conforming, nonconforming, and mixed FEM,Math. Comput. 71, pp. 945–969 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Carstensen and R. Verfürth,Edge residuals dominate a posteriori error estimates for low order finite element methods,SIAM J. Numer. Anal., 36, pp. 1571–1587 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Dörfler and M. Rumpf,An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation,Math. Comput. 67, 224, pp. 1361–1362 (1998)

    Article  MATH  Google Scholar 

  19. R. Duran and R. Rodriguez,On the asymptotic exactness of Bank—Weiser's estimator,Numer. Math. 62, pp. 297–303 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Eriksson and C. Johnson,An adaptive finite element method for linear elliptic problems,Math. Comput. 50, pp. 361–383 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Frolov, P. Neittaanmäki, and S. Repin,On the reliability, effectivity and robustness of a posteriori error estimation methods,Numerical methods for scientific computing, variational problems and applications, CIMNE, Barcelona, pp. 153–175 (2003)

    Google Scholar 

  22. M. Frolov, P. Neittaanmäki, and S. Repin,On computational properties of a posteriori error estimates based upon the method of duality error majorants,Numerical mathematics and advanced applications, Springer, Berlin, pp. 346–357 (2004)

    Google Scholar 

  23. E. Gorshkova, A. Mahalov, P. Neittaanmaki, and S. Repin,Functional a posteriori estimates for viscous flow problems with rotation,J. Math. Sci. NY, 142, pp. 927–935 (2007)

    MathSciNet  Google Scholar 

  24. E. Gorshkova, P. Neittaanmaki, and S. Repin,Comparative study of a posteriori error estimates for the Stokes problem,Numerical Mathematics and Advanced Applications (ENU-MATH 2005), Springer, Berlin, pp. 255–262 (2006)

    Google Scholar 

  25. B.-O. Heimsund, X.-C. Tai, and J. Wang,Superconvergence for the gradient of finite element approximations by L2projections,SIAM J. Numer. Anal., 40, pp, 1263–1280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Houston, R. Rannacher, E. Süli,A posteriori error analysis for stabilised finite element approximations of transport problems,Comput. Meth. Appl. Mech. Eng. 190, pp. 1483–1508 (2000)

    Article  MATH  Google Scholar 

  27. C. Johnson and P. Hansbo,Adaptive finite elements in computational mechanics,Comput. Meth. Appl. Mech. Eng. 101, pp. 143–181 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Korotov, P. Neittaanmaki and S. Repin,A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery,J. Numer. Math. 11, pp. 33–59 (2003)

    MATH  MathSciNet  Google Scholar 

  29. M. Křížek, P. Neittaanmäki and R Stenberg (eds.),Finite element methods superconver-gence, post-processing and a posteriori error estimates,Lecture Notes in Pure and Applied Mathematics, Vol. 196, Marcel Dekker, New York (1998)

    Google Scholar 

  30. R. Lazarov, S. Repin, and S. Tomar,Functional a posteriori error estimates for Discontinuous Galerkin method,Radon Institute of Computational and Applied Mathematics, Preprint 2006-40, Linz (to appear in Numer. Meth. PDE (2008))

    Google Scholar 

  31. O. Mali and S. Repin,Estimates of the indeterminacy set for elliptic boundary—value problems with uncertain data,In Adaptive modeling and simulation 2007, ed K. Runesson and P. Diez (eds.), CIMNE, Barcelona, pp. 158–161 (2007)

    Google Scholar 

  32. O. Mali and S. Repin,Estimates of the indeterminacy set for elliptic boundary—value problems with uncertain data,J. Math. Sci. 150, pp. 1869–1874 (2008)

    Article  Google Scholar 

  33. O. Mali and S. Repin,Two-sided estimates of the solution set for the reaction-diffusion problem with uncertain data(to appear in the special issue dedicated to 70s jubilee of R. Glowinski)

    Google Scholar 

  34. P. Neittaanmäki and S. Repin,Reliable methods for computer simulation, Error control and a posteriori estimates,Elsevier, New York (2004)

    MATH  Google Scholar 

  35. P. Neittaanmäki and S. Repin,A posteriori error estimates for boundary-value problems related to the biharmonic operator,East-West J. Numer. Math. 9, pp. 157–178 (2001)

    MATH  MathSciNet  Google Scholar 

  36. P. Neittaanmäki and S. Repin,Guaranteed estimates of approximation errors for numerical solutions of the Maxwell equation(to appear in the special issue dedicated to 70s jubilee of R. Glowinski)

    Google Scholar 

  37. P. Neittaanmaki, S. Repin, and P. Turchyn,New a posteriori error indicator in terms of linear functionals for linear elliptic problems,Russ. J. Numer. Anal. Math. Model. 23(1), pp. 77–87 (2008)

    Article  MathSciNet  Google Scholar 

  38. J. T. Oden, S. Prudhomme,Goal-oriented error estimation and adaptivity for the finite element method,Comput. Math. Appl. 41, pp. 735–756 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. J. Peraire and A. T. Patera,Bounds for linear-functional outputs of coercive partial differential equations: Local indicators and adaptive refinement,In advances in adaptive computational methods in mechanics, P. Ladevéze and J. T. Oden eds., Elsevier, New York, pp. 199–228 (1998)

    Chapter  Google Scholar 

  40. R. Rannacher,The dual-weighted-residual method for error control and mesh adaptation in finite element methods,The mathematics of finite elements and applications X, MAFELAP 1999. Proceedings of the 10th Conference, Brunel University, Uxbridge, Middlesex, GB, June 22–25, 1999, J. Whiteman ed., Elsevier, Amsterdam, pp 97–116 (2000)

    Google Scholar 

  41. R. Rannacher,A posteriori error estimation for nonlinear variational problems by duality theory,Zapiski Nauchn, Semin, V.A. Steklov Mathematical Institute in St.-Petersburg (POMI), 243, pp. 201–214 (1997)

    Google Scholar 

  42. S. Repin,A unified approach to a posteriori error estimation based on duality error majorants,Math. Comput. Simulat. 50, pp. 313–329 (1999)

    Article  MathSciNet  Google Scholar 

  43. S. RepinA posteriori error estimates for variational problems with uniformly convex functionals,Math. Comput. 69(230), pp. 481–500 (2000)

    MATH  MathSciNet  Google Scholar 

  44. S. RepinTwo-sided estimates of 7 from exact solutions of uniformly elliptic equations,Proceedings of St. Petersburg Mathematical Society, IX (2001), pp. 143–171, translation in American Mathematical Society Translation Series 2, 209, American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  45. S. RepinA posteriori error estimates taking into account indeterminacy of the problem data,Russ. J. Numer. Anal. Math. Model. 18, pp. 507–519 (2003)

    MATH  MathSciNet  Google Scholar 

  46. S. RepinA posteriori error estimation methods for partial differential equations,InLectures on advanced computational methods in mechanics,M. Kraus and U. Langer eds., Walter de Gruyter, Berlin, pp. 161–226 (2007)

    Google Scholar 

  47. S. RepinA posteriori error estimation methods for partial differential equations,Walter de Gruyter, Berlin (2008)

    Google Scholar 

  48. S. Repin and S. Sauter,Functional a posteriori estimates for the reaction-diffusion problem,C. R. Acad. Sci. Paris, Ser. 1 343, pp. 349–354 (2006)

    MathSciNet  Google Scholar 

  49. S. Repin, S. Sauter, and A. Smolianski,Two-sided a posteriori error estimates for mixed formulations of elliptic problems,SIAM J. Numer. Anal. 45, pp. 928–945 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. E. Stein and S. Ohnimus,Coupled model- and solution-adaptivity in the finite element method,Comput. Meth. Appl. Mech. Eng. 150, pp. 327–350 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  51. E. Stein and S. Ohnimus,Coupled anisotropic discretization and modelerror estimation in solid mechanics by local Neumann problems,Comput. Meth. Appl. Mech. Eng. 176, pp. 363– 385 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  52. E. Stein, M. Rüter, and S. Ohnimus,Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity,Comput. Meth. Appl. Mech. Eng. 196, pp. 3598– 3613 (2007)

    Article  Google Scholar 

  53. E. Stein, F.J. Bartold, S. Ohnimus, and M. Schmidt,Adaptive finite elements in elastoplastic-ity with mechanical error indicators and Neumann-type estimators,In advances in adaptive computational methods in mechanics, P. Ladevéze and J. T. Oden eds., Elsevier, New York, pp. 81–100 (1998)

    Chapter  Google Scholar 

  54. R. Verfürth,A review of a posteriori error estimation and adaptive mesh-refinement techniquesWiley, Teubner, New York, 1996

    MATH  Google Scholar 

  55. L. B. Wahlbin,Superconvergence in Galerkin Finite Element Methods,Lecture Notes in Mathematics, No 1605, Springer (1995)

    Google Scholar 

  56. J. Wang,Superconvergence analysis of finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems,J. Math. Stud. 33, pp. 229–243 (2000)

    MATH  Google Scholar 

  57. J. Wang and X. Ye,Superconvergence analysis for the NavierStokes equations,Appl. Numer. Math. 41, pp. 515–527 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  58. N.-E. Wiberg, F. Abdulwahab and S. Ziukas,Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions,Int. J. Numer. Meth. Eng. 37, pp. 3417–3440 (1997)

    Article  MathSciNet  Google Scholar 

  59. Z. Zhang and A. Naga,A new finite element gradient recovery method: superconvergence property,SIAM J. Sci. Comput. 26, pp. 1192–1213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  60. O. C. Zienkiewicz, B. Boroomand, and J.Z. Zhu,Recovery procedures in error estimation and adaptivity: Adaptivity in linear problems,In Advances in adaptive computational methods in mechanics, P. Ladevéze and J. T. Oden eds., Elsevier, New York, pp. 3–23 (1998)

    Chapter  Google Scholar 

  61. O. C. Zienkiewicz and J. Z. Zhu,A simple error estimator and adaptive procedure for practical engineering analysis,Int. J. Numer. Meth. Eng. 24 pp. 337–357 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  62. O. C. Zienkiewicz and J. Z. Zhu,Adaptive techniques in the finite element method,Commun. Appl. Numer. Meth. 4, pp. 197–204 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Neittaanmäki or S. Repin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Neittaanmäki, P., Repin, S. (2009). Computable Error Indicators for Approximate Solutions of Elliptic Problems. In: Eberhardsteiner, J., Hellmich, C., Mang, H.A., Périaux, J. (eds) ECCOMAS Multidisciplinary Jubilee Symposium. Computational Methods in Applied Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9231-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9231-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9230-5

  • Online ISBN: 978-1-4020-9231-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics