Skip to main content
Log in

A posteriori error estimators in the finite element method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

In the paper we develop a structured approach to thea posteriori estimation of the error in the approximation obtained via the finite element method. This aids the classification of existing estimators as well as allowing new estimators to be proposed for new situations. A class of abstract estimators for finite elements of orderp>1 in\(\Re ^n \),n=2, 3 based on exploiting the superconvergence phenomenon are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Burchard, H.G. (1971): Some aspects of the method of the hypercircle applied to elliptic variational problems. In: Hubbard, B., ed., Numerical Solution of Partial Differential Equations-II SYNSPADE 1970. Academic Press, New York

    Google Scholar 

  2. Babuška I., Rheinboldt, W.C. (1981): A posteriori error analysis of finite element solutions for one dimensional problems. Siam J. Numer. Anal.18, 556–589

    Google Scholar 

  3. Bramble, J.H., Schatz, A.H. (1977): Higher order local accuracy by averaging in the finite element method. Math. Comput.31, 94–111

    Google Scholar 

  4. Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North Holland, Amsterdam

    Google Scholar 

  5. Scott, R., Dupont, T.F. (1978): Constrictive polynomial approximation in Sobolev spaces. In: de Boor, C., Golub, G., eds., Recent Advances in Numerical Analysis. Academic Press, New York

    Google Scholar 

  6. Ekeland, I., Témam R. (1976): Convex Analysis and Variational Problems. North Holland, Amsterdam

    Google Scholar 

  7. Kelly, D.W. (1984): The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Meth. Eng.20, 1491

    Google Scholar 

  8. Kelly, D.W., Gago, R., Zienkiewicz, O.C., Babuška, I. (1983): A posteriori error analysis and adaptive processes in the finite element method. Part I — Error Analysis. Int. J. Num. Meth. Eng.19, 1593–1619

    Google Scholar 

  9. Kelly, D.W., Mills, R.J., Reizes, J.A., Miller, A.D.: (1987): A posteriori error estimates of the solution error caused by discretization in the finite element, finite difference and boundary element methods. Int. J. Numer. Meth. Eng.24, 1921

    Google Scholar 

  10. Křížek M., Neitanmäki, P. (1987): On a global superconvergence of the gradient of linear triangular elements. J. Comp. App. Math.18, 221–233

    Google Scholar 

  11. Křížek M., Neitaanmäki, P. (1987): On superconvergence techniques. Acta Applicandae Mathematicae9, 175–198

    Google Scholar 

  12. Lesaint, P., Zlámal, M. (1979): Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numér.13, 139–166

    Google Scholar 

  13. Levine N. (1985): Superconvergent estimation of the gradient from linear finite element approximations on triangular elements. Reading University Numerical Analysis Report 3/85

  14. Schatz, A.H. (1974): An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp.28, 959–962

    Google Scholar 

  15. Schumkaer, L.L. (1981): Spline functions: Basis theory. Wiley, New York

    Google Scholar 

  16. Thomée, V. (1977): High order local approximations to derivatives in the finite element method. Math. Comp.31, 652–660

    Google Scholar 

  17. Zienkiewicz, O.C., Gago, J.P., Kelly, D.W. (1983): The hierarchical concept in the finite element method. Comp. and Struct.16, 53–65

    Google Scholar 

  18. Zlámal, M. (1975): Some superconvergence results in the finite element method. In Mathematical Aspects of Finite Element Methods: Proceedings of the conference held in Rome 1975. Springer Lecture Notes in Mathematics606

  19. Zlámal, M. (1978): Superconvergence and reduced integration in the finite element method. Math. Comput.32, 663–685

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainsworth, M., Craig, A. A posteriori error estimators in the finite element method. Numer. Math. 60, 429–463 (1991). https://doi.org/10.1007/BF01385730

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385730

Mathematics Subject Classification (1991)

Navigation