Skip to main content

Strategies for Epigenome Analysis

  • Chapter
Epigenomics

Abstract

The eukaryotic genome is packaged into nucleosomes, which form the basal unit of chromatin, the physiological form of DNA within the nucleus. Apart from its function in compacting the immense nuclear DNA molecules, chromatin also serves as a platform onto which multiple signalling pathways converge to cooperate in determining the expression status of mRNAs and other (non-coding) RNA molecules. Epigenetic profile analysis aims to determine what changes on the nucleosomes cooperate to establish and maintain DNA sequence-independent heritable traits such as those determining cell identity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barski, A., et al., High-resolution profiling of histone methylations in the human genome. Cell, 2007. 129(4): p. 823–37.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W.G., et al., Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 2003. 302(5646): 885–9.

    Article  PubMed  CAS  Google Scholar 

  • Colella, S., et al., Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques, 2003. 35(1): 146–50.

    PubMed  CAS  Google Scholar 

  • Cross, S.H., et al., Purification of CpG islands using a methylated DNA binding column. Nat Genet, 1994. 6(3): 236–44.

    Article  PubMed  CAS  Google Scholar 

  • Dupont, J.M., et al., De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem, 2004. 333(1): 119–27.

    Article  PubMed  CAS  Google Scholar 

  • Eads, C.A., et al., MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res, 2000. 28(8): E32.

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt, F., et al., DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 2006. 38(12): 1378–85.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Q. and Y. Zhang, The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev, 2001. 15(7): 827–32.

    PubMed  CAS  Google Scholar 

  • Frommer, M., et al., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A, 1992. 89(5): 1827–31.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden, M. and M. Frommer, CpG islands in vertebrate genomes. J Mol Biol, 1987. 196(2): 261–82.

    Article  PubMed  CAS  Google Scholar 

  • Hendrich, B., et al., Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev, 2001. 15(6): 710–23.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J.G., et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A, 1996. 93(18): 9821–6.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T.H., M.R. Perry, and D.E. Laux, Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet, 1999. 8(3): 459–70.

    Article  PubMed  CAS  Google Scholar 

  • Ji, H. and W.H. Wong, TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics, 2005. 21(18): 3629–36.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D.S., et al., Genome-wide mapping of in vivo protein-DNA interactions. Science, 2007. 316(5830): 1497–502.

    Article  PubMed  CAS  Google Scholar 

  • Khulan, B., et al., Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res, 2006. 16(8): 1046–55.

    Article  PubMed  CAS  Google Scholar 

  • Klose, R.J., et al., DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell, 2005. 19(5): 667–78.

    Article  PubMed  CAS  Google Scholar 

  • Le Guezennec, X., et al., MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol, 2006. 26(3): 843–51.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C.L., S.L. Schreiber, and B.E. Bernstein, Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics, 2003. 4(1): 19.

    Article  PubMed  CAS  Google Scholar 

  • Lyst, M.J., X. Nan, and I. Stancheva, Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins. Embo J, 2006. 25(22): 5317–28.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T.S., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): 553–60.

    Article  PubMed  CAS  Google Scholar 

  • Ng, H.H., et al., MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet, 1999. 23(1): 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Nouzova, M., et al., Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J Pharmacol Exp Ther, 2004. 311(3): 968–81.

    Article  PubMed  CAS  Google Scholar 

  • O’Geen, H., et al., Comparison of sample preparation methods for ChIP-chip assays. Biotechniques, 2006. 41(5): 577–80.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T. and G.P. Pfeifer, Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest, 2005. 85(9): 1172–80.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T., et al., MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res, 2006. 66(16): 7939–47.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T.A., et al., High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A, 2008. 105(1): 252–7.

    Article  PubMed  CAS  Google Scholar 

  • Ren, B., et al., Genome-wide location and function of DNA binding proteins. Science, 2000. 290(5500): 2306–9.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G., et al., Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 2007. 4(8): 651–7.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi, M., Y.H. Chuu, and T. Sekiya, Isolation of DNA fragments associated with methylated CpG islands in human adenocarcinomas of the lung using a methylated DNA binding column and denaturing gradient gel electrophoresis. Proc Natl Acad Sci U S A, 1999. 96(6): 2913–8.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, M.J., P.L. Larsen, and A. Varshavsky, Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell, 1988. 53(6): 937–47.

    Article  PubMed  CAS  Google Scholar 

  • Tan, C.P. and S. Nakielny, Control of the DNA methylation system component MBD2 by protein arginine methylation. Mol Cell Biol, 2006. 26(19): 7224–35.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., et al., Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 2005. 37(8): 853–62.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., et al., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007. 39(4): 457–66.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Z. and P.W. Laird, COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res, 1997. 25(12): 2532–4.

    Article  PubMed  CAS  Google Scholar 

  • Yasui, D.H., et al., Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci U S A, 2007. 104(49): 19416–21.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, P.Y., et al., In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques, 2006. 41(6): 694, 696, 698.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., et al., Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell, 2006. 126(6): 1189–201.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., et al., ChIP-chip: data, model, and analysis. Biometrics, 2007. 63(3): 787–96.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman, D., et al., Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 2007. 39(1): 61–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brinkman, A., Stunnenberg, H. (2009). Strategies for Epigenome Analysis. In: Ferguson-Smith, A.C., Greally, J.M., Martienssen, R.A. (eds) Epigenomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9187-2_1

Download citation

Publish with us

Policies and ethics