Skip to main content

Microscale Flow Dynamics of Red Blood Cells in Microchannels: An Experimental and Numerical Analysis

  • Chapter
Advances in Computational Vision and Medical Image Processing

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 13))

Abstract

The blood flow dynamics in microcirculation depends strongly on the motion, deformation and interaction of red blood cells (RBCs) within the microves-sel. We present confocal micro-PTV measurements on the motion of individual RBCs through a circular polydimethysiloxane (PDMS) microchannel. The RBC radial displacement and dispersion calculated from these measurements show that the RBC paths are strongly dependent on the both Hct and plasma layer. In order to obtain more detailed information of the non-Newtonian property of blood a novel computational scheme is also described. The simulated flow dynamics were in good agreement with the Casson flow model and in vivo observations. In the near future by comparing both results we hope to clarify a variety of complex phenomena occurring at the microscale level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramoff M., Magelhaes P., Ram S. (2004) Image Processing with Image Journal of Biophotonics International 11: 36–42.

    Google Scholar 

  2. Caro C., Pedley, T., Schroter R., Seed W. (1978) The mechanics of the circulation. Oxford, Oxford University Press.

    Google Scholar 

  3. Chien S., Usami S., Skalak R. (1984) Blood flow in small tubes In: Handbook of physiology — the cardiovascular system IV, Microcirculation, Part I. Bethesda MD, American Physiological Society, pp 217–249.

    Google Scholar 

  4. Cloutier G., Qin Z., Durand L.G., Teh B.G. (1996) Power Doppler ultrasound evaluation of the shear rate and shear stress Dependences of red blood cell aggregation. IEEE Transactions on Biomedical Engineering 43: 441–450.

    Article  Google Scholar 

  5. Fahraeus R., Lindqvist T. (1931) The viscosity of the blood in narrow capillary tubes. American Journal of Physiology 96: 562–568.

    Google Scholar 

  6. Goldsmith H. (1971) Red cell motions and wall interactions in tube flow. Federation Proceedings 30: 1578–1588.

    Google Scholar 

  7. Goldsmith H., Marlow J. (1979) Flow behavior of erythrocytes. II. Particles motions in concentrated suspensions of ghost cells. Journal of Colloid and Interface Science 71: 383–407.

    Article  Google Scholar 

  8. Goldsmith H., Turitto V. (1986) Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thrombosis and Haemostasis 55: 415–435.

    Google Scholar 

  9. Ishikawa T., Pedley T. (2007) Diffusion of swimming model micro-organisms in a semi-dilute suspensions. Journal of Fluid Mechanics 588: 437–462.

    MATH  MathSciNet  Google Scholar 

  10. Lima R., Ishikawa T., Imai, Y., Takeda, M., Wada, S., Yamaguchi, T. (2008a) “Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system” (under revision to Annals of Biomedical Engineering).

    Google Scholar 

  11. Lima R., Ishikawa T., Imai, Y., Takeda, M., Wada, S., Yamaguchi, T. (2008) Radial dispersion of red blood cells in blood flowing through glass capillaries: role of hematocrit and geometry. Journal of Biomechanics 41: 2188–2196.

    Article  Google Scholar 

  12. Lima R. (2007) Analysis of the blood flow behavior through microchannels by a confocal micro-PIV/PTV system. Ph.D. thesis, Tohoku University, Japan.

    Google Scholar 

  13. Lima, R., Wada, S., Takeda, M., Tsubota, K., Yamaguchi, T. (2007) In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. Journal of Biomechanics 40: 2752–2757.

    Article  Google Scholar 

  14. Lima, R., Wada, S., Tanaka, S., Takeda, M., Ishikawa, T., Tsubota, K., Imai, Y., Yamaguchi, T. (2008) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomedical Microdevices 10: 153–167.

    Article  Google Scholar 

  15. Lima, R., Wada, S., Tsubota, K., Yamaguchi, T. (2006) Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel. Measurement Science and Technology 17: 797–808.

    Article  Google Scholar 

  16. Meijering E., Smal I., Danuser G. (2006) Tracking in molecular bioimaging. IEEE Signal Processing Magazine 23: 46–53.

    Article  Google Scholar 

  17. Oka S. (1984) Biorehology. Shokabo, Tokyo.

    Google Scholar 

  18. Park J., Choi C., Kihm K. (2004) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Experiments in Fluids 37: 105–119.

    Google Scholar 

  19. Schmid-Schonbein, H., Wells, R. (1969) Fluid drop-like transition of erythrocytes under shear. Science 165: 288–291.

    Article  Google Scholar 

  20. Shiga T., Maeda N., Suda T., Kon K., Sekiya M., Oka S. (1979) Rheological and kinetic dysfunctions of the cholesterol-loaded, human erythrocytes. Biorheology 16: 363–369.

    Google Scholar 

  21. Tanaami T., Otsuki S., Tomosada N., Kosugi Y., Shimizu M., Ishida H. (2002) High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Applied Optics 41: 4704–4708.

    Article  Google Scholar 

  22. Wada S., Kobayashi R. (2003) Numerical simulation of various shape changes of a swollen red blood cell by decrease of its volume. Transactions of the Japan Society of Mechanical Engineers 69A: 14–21 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science +Business Media B.V.

About this chapter

Cite this chapter

Lima, R., Nakamura, M., Omori, T., Ishikawa, T., Wada, S., Yamaguchi, T. (2009). Microscale Flow Dynamics of Red Blood Cells in Microchannels: An Experimental and Numerical Analysis. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds) Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9086-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9086-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9085-1

  • Online ISBN: 978-1-4020-9086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics