Skip to main content

HIV Infection as a Model of Accelerated Immunosenescence

  • Chapter
Handbook on Immunosenescence

Abstract

Since its discovery in 1983, HIV-1 has become the most extensively studied pathogen in history. Massive CD4+T-cell depletion and sustained immune activation and inflammation are hallmarks of HIV-1 infection. However, the precise pathway to the onset of immunodeficiency that develops during HIV-1 infection has not been resolved yet. In recent years, an intriguing parallel between HIV-1 infection and ageing has emerged: HIV-1 infected individuals present immunological alterations that are remarkably similar to those accumulated with age by HIV-1 uninfected elderly. These alterations, e.g., loss of regenerative capacity and accumulation of ageing T-cells, are suggestive of a process of immunosenescence, which may result from persistent HIV-1 replication and systemic immune activation. Furthermore, the comparison between HIV-1 infection and human ageing may go beyond the sole onset of immunosenescence, and extends to the deterioration of a number of physiological functions related to inflammation and systemic ageing. In the present chapter, we provide to the readers the different pieces of the HIV pathogenesis puzzle, from the virus itself to the development of therapeutic strategies, and discuss how they fit together into a model of accelerated immunosenescence and systemic ageing in HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT, Wolf RA, et al (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 305:1425–1431

    PubMed  CAS  Google Scholar 

  2. Masur H, Michelis MA, Greene JB, Onorato I, Stouwe RA, Holzman RS, et al (1981) An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med 305:1431–1438

    PubMed  CAS  Google Scholar 

  3. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  PubMed  CAS  Google Scholar 

  4. Popovic M, Sarngadharan MG, Read E and Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre- AIDS. Science 224;497–500

    Article  PubMed  CAS  Google Scholar 

  5. Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM and Oshiro LS (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 1984 225:840–842

    CAS  Google Scholar 

  6. Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM and Ho DD (1998) An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 391:594–597

    Article  PubMed  CAS  Google Scholar 

  7. Al-Harthi L and Roebuck KA (1998). Human immunodeficiency virus type-1 transcription: role of the 5’- untranslated leader region (review). Int J Mol Med 1:875–881

    PubMed  CAS  Google Scholar 

  8. Siliciano JD and Siliciano RF (2000) Latency and viral persistence in HIV-1 infection. J Clin Invest 106:823–825

    Article  PubMed  CAS  Google Scholar 

  9. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, et al (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373:117–122

    Article  PubMed  CAS  Google Scholar 

  10. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM and Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126

    Article  PubMed  CAS  Google Scholar 

  11. Lifson JD, Nowak MA, Goldstein S, Rossio JL, Kinter A, Vasquez G, et al (1997) The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection. J Virol 71:9508–9514

    PubMed  CAS  Google Scholar 

  12. Pantaleo G, Graziosi C and Fauci AS (1993) New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 328:327–335

    Article  PubMed  CAS  Google Scholar 

  13. Lederman MM, and Valdez H (2000) Immune restoration with antiretroviral therapies: implications for clinical management. JAMA 284:223–228

    Article  PubMed  CAS  Google Scholar 

  14. Hahn BH, Shaw GM, Taylor ME, Redfield RR, Markham PD, Salahuddin SZ, et al (1986) Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science 232:1548–1553

    Article  PubMed  CAS  Google Scholar 

  15. Poignard P, Sabbe R, Picchio GR, Wang M, Gulizia RJ, Katinger H, et al (1999) Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 10:431–438

    Article  PubMed  CAS  Google Scholar 

  16. Borrow P, Lewicki H, Wei X, Horwitz MS, Peffer N, Meyers H, et al (1997) Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 3:205–211

    Article  PubMed  CAS  Google Scholar 

  17. Kaslow RA, Carrington M, Apple R, Park L, Munoz A, Saah AJ, et al (1996) Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med 2:405–411

    Article  PubMed  CAS  Google Scholar 

  18. Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, Nowak MA, et al (1997) Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3:212–217

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz O, Marechal V, Le Gall S, Lemonnier F and Heard JM (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2:338–342

    Article  PubMed  CAS  Google Scholar 

  20. Collins KL, Chen BK, Kalams SA, Walker BD and Baltimore D (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401

    Article  PubMed  CAS  Google Scholar 

  21. Xu XN, Screaton GR, Gotch FM, Dong T, Tan R, Almond N, et al (1997) Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 186:7–16

    Article  PubMed  CAS  Google Scholar 

  22. Piguet V, Schwartz O, Le Gall S and Trono D (1999) The downregulation of CD4 and MHCI by primate lentiviruses: a paradigm for the modulation of cell surface receptors. Immunol Rev 168:51–63

    Article  PubMed  CAS  Google Scholar 

  23. Lama J, Mangasarian A and Trono D (1999) Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr Biol 9:622–631

    Article  PubMed  CAS  Google Scholar 

  24. Ross TM, Oran AE and Cullen BR (1999) Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein. Curr Biol 9:613–621

    Article  PubMed  CAS  Google Scholar 

  25. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5:512–517

    Article  PubMed  CAS  Google Scholar 

  26. Veazey RS, Mansfield KG, Tham IC, Carville AC, Shvetz DE, Forand AE, et al (2000) Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection. J Virol 74:11001–11007

    Article  PubMed  CAS  Google Scholar 

  27. Veazey RS, Marx PA and Lackner AA (2003) Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in simian immunodeficiency virus infection. J Infect Dis 187:769–776

    Article  PubMed  CAS  Google Scholar 

  28. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200:749–759

    Article  PubMed  CAS  Google Scholar 

  29. Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, et al (1998) Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280:427–431

    Article  PubMed  CAS  Google Scholar 

  30. Mattapallil JJ, Smit-McBride Z, McChesney M and Dandekar S (1998) Intestinal intraepithelial lymphocytes are primed for gamma interferon and MIP-1beta expression and display antiviral cytotoxic activity despite severe CD4(+) T-cell depletion in primary simian immunodeficiency virus infection. J Virol 72:6421–6429

    PubMed  CAS  Google Scholar 

  31. Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M and Roederer M (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434:1093–1097

    Article  PubMed  CAS  Google Scholar 

  32. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, et al (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434:1148–1152

    PubMed  CAS  Google Scholar 

  33. Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, et al (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200:761–770

    Article  PubMed  CAS  Google Scholar 

  34. Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, et al (1996) Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274:985–989

    Article  PubMed  CAS  Google Scholar 

  35. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Okamoto Y, et al (2002) HIV preferentially infects HIV-specific CD4+ T cells. Nature 417:95–98

    Article  PubMed  CAS  Google Scholar 

  36. Lassen K, Han Y, Zhou Y, Siliciano J and Siliciano RF (2004) The multifactorial nature of HIV-1 latency. Trends Mol Med 10:525–531

    Article  PubMed  CAS  Google Scholar 

  37. Groux H, Torpier G, Monte D, Mouton Y, Capron A and Ameisen JC (1992) Activationinduced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 175:331–340

    Article  PubMed  CAS  Google Scholar 

  38. Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RP and Miedema F (1992) Programmed death of T cells in HIV-1 infection. Science 257:217–219

    Article  PubMed  CAS  Google Scholar 

  39. Gougeon ML and Montagnier L (1995) Apoptosis in AIDS. Science 1993; 260:1269-1270.

    Google Scholar 

  40. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, et al Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1:129–134

    Google Scholar 

  41. Weiss L, Haeffner-Cavaillon N, Laude M, Gilquin J and Kazatchkine MD (1989) HIV infection is associated with the spontaneous production of interleukin-1 (IL-1) in vivo and with an abnormal release of IL-1 alpha in vitro. AIDS 3:695–699

    Article  PubMed  CAS  Google Scholar 

  42. Molina JM, Scadden DT, Byrn R, Dinarello CA and Groopman JE (1989) Production of tumor necrosis factor alpha and interleukin 1 beta by monocytic cells infected with human immunodeficiency virus. J Clin Invest 84:733–737

    Article  PubMed  CAS  Google Scholar 

  43. Emilie D, Peuchmaur M, Maillot MC, Crevon MC, Brousse N, Delfraissy JF, et al (1990) Production of interleukins in human immunodeficiency virus-1-replicating lymph nodes. J Clin Invest 86:148–159

    Article  PubMed  CAS  Google Scholar 

  44. Birx DL, Redfield RR, Tencer K, Fowler A, Burke DS and Tosato G (1990) Induction of interleukin-6 during human immunodeficiency virus infection. Blood 76:2303–2310

    PubMed  CAS  Google Scholar 

  45. Lafeuillade A, Poizot-Martin I, Quilichini R, Gastaut JA, Kaplanski S, Farnarier C, et al (1991) Increased interleukin-6 production is associated with disease progression in HIV infection. AIDS 5:1139–1140

    Article  PubMed  CAS  Google Scholar 

  46. Canque B, Rosenzwajg M, Gey A, Tartour E, Fridman WH, and Gluckman JC (1996) Macrophage inflammatory protein-1alpha is induced by human immunodeficiency virus infection of monocyte-derived macrophages. Blood 87:2011–2019

    PubMed  CAS  Google Scholar 

  47. Cotter RL, Zheng J, Che M, Niemann D, Liu Y, He J, et al (2001) Regulation of human immunodeficiency virus type 1 infection, beta-chemokine production, and CCR5 expression in CD40L-stimulated macrophages: immune control of viral entry. J Virol 75:4308–4320

    Article  PubMed  CAS  Google Scholar 

  48. Giorgi JV, Liu Z, Hultin LE, Cumberland WG, Hennessey K and Detels R (1993) Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 6:904–912

    PubMed  CAS  Google Scholar 

  49. Liu Z, Cumberland WG, Hultin LE, Kaplan AH, Detels R and Giorgi JV (1998) CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J Acquir Immune Defic Syndr Hum Retrovirol 18:332–340

    PubMed  CAS  Google Scholar 

  50. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179:859–870

    Article  PubMed  CAS  Google Scholar 

  51. Hazenberg MD, Otto SA, van Benthem BH, Roos MT, Coutinho RA, Lange JM, et al (2003) Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17:1881–1888

    Article  PubMed  Google Scholar 

  52. Deeks SG, Kitchen CM, Liu L, Guo H, Gascon R, Narvaez AB, et al (2004) Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 104:942–947

    Article  PubMed  CAS  Google Scholar 

  53. Wilson CM, Ellenberg JH, Douglas SD, Moscicki AB and Holland CA (2004) CD8+CD38+ T cells but not HIV type 1 RNA viral load predict CD4+ T cell loss in a predominantly minority female HIV+ adolescent population. AIDS Res Hum Retroviruses 20:263–269

    Article  PubMed  CAS  Google Scholar 

  54. Silvestri G, Sodora DL, Koup RA, Paiardini M, O’Neil SP, McClure HM, et al (2003) Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18:441–452

    Article  PubMed  CAS  Google Scholar 

  55. Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z and Victorino RM (2002) CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 169:3400–3406

    PubMed  CAS  Google Scholar 

  56. Anzala AO, Simonsen JN, Kimani J, Ball TB, Nagelkerke NJ, Rutherford J, et al (2000) Acute sexually transmitted infections increase human immunodeficiency virus type 1 plasma viremia, increase plasma type 2 cytokines, and decrease CD4 cell counts. J Infect Dis 182:459–466

    Article  PubMed  CAS  Google Scholar 

  57. Villinger F, Rowe T, Parekh BS, Green TA, Mayne AE, Grimm B, et al (2001) Chronic immune stimulation accelerates SIV-induced disease progression. J Med Primatol 30:254–259

    Article  PubMed  CAS  Google Scholar 

  58. Betts MR, Ambrozak DR, Douek DC, Bonhoeffer S, Brenchley JM, Casazza JP, et al (2001) Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J Virol 75:11983–11991

    Article  PubMed  CAS  Google Scholar 

  59. Papagno L, Appay V, Sutton J, Rostron T, Gillespie GM, Ogg GS, et al (2002) Comparison between HIV- and CMV-specific T cell responses in long-term HIV infected donors. Clin Exp Immunol 130:509–517

    Article  PubMed  CAS  Google Scholar 

  60. Merrill JE, Koyanagi Y and Chen IS (1989) Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63:4404–4408

    PubMed  CAS  Google Scholar 

  61. Rieckmann P, Poli G, Fox CH, Kehrl JH and Fauci AS (1991) Recombinant gp120 specifically enhances tumor necrosis factor-alpha production and Ig secretion in B lymphocytes from HIV-infected individuals but not from seronegative donors. J Immunol 147:2922–2927

    PubMed  CAS  Google Scholar 

  62. Lee C, Liu QH, Tomkowicz B, Yi Y, Freedman BD and Collman RG (2003) Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways. J Leukoc Biol 74:676–682

    Article  PubMed  CAS  Google Scholar 

  63. Wang JK, Kiyokawa E, Verdin E and Trono D (2000) The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci U S A 97:394–399

    Article  PubMed  CAS  Google Scholar 

  64. Simmons A, Aluvihare V and McMichael A (2001) Nef triggers a transcriptional program in T cells imitating single- signal T cell activation and inducing HIV virulence mediators. Immunity 14:763–777

    Article  PubMed  CAS  Google Scholar 

  65. Swingler S, Mann A, Jacque J, Brichacek B, Sasseville VG, Williams K, et al (1999) HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5:997–1103

    Article  PubMed  CAS  Google Scholar 

  66. Dunn HS, Haney DJ, Ghanekar SA, Stepick-Biek P, Lewis DB and Maecker HT (2002) Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis 186:15–22

    Article  PubMed  CAS  Google Scholar 

  67. Papagno L, Spina CA, Marchant A, Salio M, Rufer N, Little S, et al (2004) Immune Activation and CD8(+) T-Cell Differentiation towards Senescence in HIV-1 Infection. PLoS Biol 2:E20

    Article  PubMed  CAS  Google Scholar 

  68. Doisne JM, Urrutia A, Lacabaratz-Porret C, Goujard C, Meyer L, Chaix ML, et al (2004) CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection. J Immunol 173:2410–2418

    PubMed  CAS  Google Scholar 

  69. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    Article  PubMed  CAS  Google Scholar 

  70. Brenchley JM, Price DA and Douek DC (2006) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7:235–239

    Article  PubMed  CAS  Google Scholar 

  71. Kawakami K, Scheidereit C and Roeder RG (1988) Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-kappa B) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci U S A 85:4700–4704

    Article  PubMed  CAS  Google Scholar 

  72. Decrion AZ, Dichamp I, Varin A and Herbein G (2005) HIV and inflammation. Curr HIV Res 3:243–259

    Article  PubMed  CAS  Google Scholar 

  73. Stockmann M, Schmitz H, Fromm M, Schmidt W, Pauli G, Scholz P, et al (2000) Mechanisms of epithelial barrier impairment in HIV infection. Ann N Y Acad Sci 915:293–303

    PubMed  CAS  Google Scholar 

  74. Ferreira C, Barthlott T, Garcia S, Zamoyska R and Stockinger B (2000) Differential survival of naive CD4 and CD8 T cells. J Immunol 165:3689–3694

    PubMed  CAS  Google Scholar 

  75. Homann D, Teyton L and Oldstone MB (2001) Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 7:913-919.

    Article  PubMed  CAS  Google Scholar 

  76. Foulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE and Shen H (2002) Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 168:1528–1532

    PubMed  CAS  Google Scholar 

  77. Effros RB and Pawelec G (1997) Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol Today 18:450–454

    Article  PubMed  CAS  Google Scholar 

  78. Maini MK, Soares MV, Zilch CF, Akbar AN and Beverley PC (1999) Virus-induced CD8+ T cell clonal expansion is associated with telomerase up-regulation and telomere length preservation: a mechanism for rescue from replicative senescence. J Immunol 162:4521–4526

    PubMed  CAS  Google Scholar 

  79. Hathcock KS, Kaech SM, Ahmed R and Hodes RJ (2003) Induction of telomerase activity and maintenance of telomere length in virus-specific effector and memory CD8+ T cells. J Immunol 170:147–152

    PubMed  CAS  Google Scholar 

  80. Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM, et al (2003) Telomerase levels control the lifespan of human T lymphocytes. Blood 102:849–857

    Article  PubMed  CAS  Google Scholar 

  81. Plunkett FJ, Soares MV, Annels N, Hislop A, Ivory K, Lowdell M, et al (2001) The flow cytometric analysis of telomere length in antigen-specific CD8+ T cells during acute Epstein-Barr virus infection. Blood 97:700–707

    Article  PubMed  CAS  Google Scholar 

  82. Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M, et al (2007) The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol 178:7710–7719

    PubMed  CAS  Google Scholar 

  83. Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, et al (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest 115:930–939

    PubMed  CAS  Google Scholar 

  84. George AJ and Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272

    Article  PubMed  CAS  Google Scholar 

  85. Aspinall R and Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256

    Article  PubMed  CAS  Google Scholar 

  86. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695

    Article  PubMed  CAS  Google Scholar 

  87. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, et al (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332:143–149

    Article  PubMed  CAS  Google Scholar 

  88. Mackall CL and Gress RE (1997) Thymic aging and T-cell regeneration. Immunol Rev 1997; 160:91-102.

    Article  CAS  Google Scholar 

  89. Engelhardt M, Kumar R, Albanell J, Pettengell R, Han W, and Moore MA. Telomerase regulation, cell cycle, and telomere stability in primitive hematopoietic cells. Blood 90:182–193

    Google Scholar 

  90. Hakim FT, Cepeda R, Kaimei S, Mackall CL, McAtee N, Zujewski J, et al (1997) Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90:3789–3798

    PubMed  CAS  Google Scholar 

  91. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, et al (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190:157–167

    Article  PubMed  CAS  Google Scholar 

  92. Notaro R, Cimmino A, Tabarini D, Rotoli B and Luzzatto L (1997) In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci U S A 94:13782–13785

    Article  PubMed  CAS  Google Scholar 

  93. Effros RB (2000) Telomeres and HIV disease. Microbes Infect 2:69–76

    Article  PubMed  CAS  Google Scholar 

  94. Effros RB (2003) Replicative Senescence: The Final Stage of Memory T Cell Differentiation? Curr HIV Res 1:131–152

    Article  Google Scholar 

  95. Gamadia LE, van Leeuwen EM, Remmerswaal EB, Yong SL, Surachno S, Wertheimvan Dillen PM, et al (2004) The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 172:6107–6114

    PubMed  CAS  Google Scholar 

  96. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  PubMed  CAS  Google Scholar 

  97. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107:4781–4789

    Article  PubMed  CAS  Google Scholar 

  98. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW, et al (2002) HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3:1061–1068

    Article  PubMed  CAS  Google Scholar 

  99. Alexander-Miller MA, Leggatt GR and Berzofsky JA (1996) Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci U S A 93:4102–4107

    Article  PubMed  CAS  Google Scholar 

  100. Sedlik C, Dadaglio G, Saron MF, Deriaud E, Rojas M, Casal SI, et al (2000) In vivo induction of a high-avidity, high-frequency cytotoxic T-lymphocyte response is associated with antiviral protective immunity. J Virol 74:5769–5775

    Article  PubMed  CAS  Google Scholar 

  101. Almeida JR, Price DA, Papagno L, Aït Arkoub Z, Sauce D, Bornstein E, et al (2007) Superior control of HIV-1 replication by CD8+ T-cells is reflected by their avidity, polyfunctionality and clonal turnover. J Exp Med In Press

    Google Scholar 

  102. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354

    Article  PubMed  CAS  Google Scholar 

  103. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, et al (2006) Upregulation of PD-1 expression on HIV-specific CD8(+) T cells leads to reversible immune dysfunction. Nat Med 12:1198–1202

    Article  PubMed  CAS  Google Scholar 

  104. Kostense S, Ogg GS, Manting EH, Gillespie G, Joling J, Vandenberghe K, et al (2001) High viral burden in the presence of major HIV-specific CD8(+) T cell expansions: evidence for impaired CTL effector function. Eur J Immunol 31:677–686

    Article  PubMed  CAS  Google Scholar 

  105. Kostense S, Vandenberghe K, Joling J, Van Baarle D, Nanlohy N, Manting E, et al (2002) Persistent numbers of tetramer+ CD8(+) T cells, but loss of interferon- gamma +HIV-specific T cells during progression to AIDS. Blood 99:2505–2511

    Article  PubMed  CAS  Google Scholar 

  106. Sauce D, Almeida JR, Lasrsen M, Haro L, Autran B, Freeman G, et al (2007) PD-1 expression on human CD8+ T-cells depends on both state of differentiation and activation status. AIDS In press

    Google Scholar 

  107. Marandin A, Katz A, Oksenhendler E, Tulliez M, Picard F, Vainchenker W, et al (1996) Loss of primitive hematopoietic progenitors in patients with human immunodeficiency virus infection. Blood 88:4568–4578

    PubMed  CAS  Google Scholar 

  108. Jenkins M, Hanley MB, Moreno MB, Wieder E and McCune JM (1998) Human immunodeficiency virus-1 infection interrupts thymopoiesis and multilineage hematopoiesis in vivo. Blood 91:2672–2678

    PubMed  CAS  Google Scholar 

  109. Moses A, Nelson J and Bagby GC, Jr (1998) The influence of human immunodeficiency virus-1 on hematopoiesis. Blood 91:1479–1495

    PubMed  CAS  Google Scholar 

  110. Schnittman SM, Denning SM, Greenhouse JJ, Justement JS, Baseler M, Kurtzberg J, et al (1990) Evidence for susceptibility of intrathymic T-cell precursors and their progeny carrying T-cell antigen receptor phenotypes TCR alpha beta + and TCR gamma delta + to human immunodeficiency virus infection: a mechanism for CD4+ (T4) lymphocyte depletion. Proc Natl Acad Sci U S A 87:7727–7731

    Article  PubMed  CAS  Google Scholar 

  111. Stanley SK, McCune JM, Kaneshima H, Justement JS, Sullivan M, Boone E, et al (1993) Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J Exp Med 178:1151–1163

    Article  PubMed  CAS  Google Scholar 

  112. Kalayjian RC, Landay A, Pollard RB, Taub DD, Gross BH, Francis IR, et al (2003) Agerelated immune dysfunction in health and in human immunodeficiency virus (HIV) disease: association of age and HIV infection with naive CD8+ cell depletion, reduced expression of CD28 on CD8+ cells, and reduced thymic volumes. J Infect Dis 187:1924–1933

    Article  PubMed  Google Scholar 

  113. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, et al (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164:2180–2187

    PubMed  CAS  Google Scholar 

  114. Linton PJ and Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139

    Article  PubMed  CAS  Google Scholar 

  115. Schacker TW, Nguyen PL, Beilman GJ, Wolinsky S, Larson M, Reilly C, et al (2002) Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J Clin Invest 110:1133–1139

    PubMed  CAS  Google Scholar 

  116. Schacker TW, Reilly C, Beilman GJ, Taylor J, Skarda D, Krason D, et al (2005) Amount of lymphatic tissue fibrosis in HIV infection predicts magnitude of HAART-associated change in peripheral CD4 cell count. AIDS 19:2169–2171

    Article  PubMed  Google Scholar 

  117. Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, Wieder E, et al (1999) Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med 5:83–89

    Article  PubMed  CAS  Google Scholar 

  118. Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, et al (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168:5954–5958

    PubMed  CAS  Google Scholar 

  119. Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, et al (1996) Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10:F17–F22

    Article  PubMed  CAS  Google Scholar 

  120. Wolthers KC, Bea G, Wisman A, Otto SA, de Roda Husman AM, Schaft N, et al (1996) T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 274:1543–1547

    Article  PubMed  CAS  Google Scholar 

  121. Clerici M, Stocks NI, Zajac RA, Boswell RN, Lucey DR, Via CS, et al (1989) Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4+ cell numbers and clinical staging. J Clin Invest 84:1892–1899

    Article  PubMed  CAS  Google Scholar 

  122. Fan J, Bass HZ and Fahey JL (1993) Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol 151:5031–5040

    PubMed  CAS  Google Scholar 

  123. Appay V and Rowland-Jones SL (2002) Premature ageing of the immune system: the cause of AIDS? Trends Immunol 23:580–585

    Article  PubMed  CAS  Google Scholar 

  124. Dyer WB, Ogg GS, Demoitie MA, Jin X, Geczy AF, Rowland-Jones SL, et al (1999) Strong human immunodeficiency virus (HIV)-specific cytotoxic T- lymphocyte activity in Sydney Blood Bank Cohort patients infected with nef-defective HIV type 1. J Virol 73:436–443

    PubMed  CAS  Google Scholar 

  125. Darby SC, Ewart DW, Giangrande PL, Spooner RJ and Rizza CR (1996) Importance of age at infection with HIV-1 for survival and development of AIDS in UK haemophilia population. UK Haemophilia Centre Directors’ Organisation. Lancet 347:1573–1579

    PubMed  CAS  Google Scholar 

  126. Cohen Stuart J, Hamann D, Borleffs J, Roos M, Miedema F, Boucher C, et al (2002) Reconstitution of naive T cells during antiretroviral treatment of HIV-infected adults is dependent on age. AIDS 16:2263–2266

    Article  PubMed  CAS  Google Scholar 

  127. Pawelec G, Effros RB, Caruso C, Remarque E, Barnett Y and Solana R (1999) T cells and aging (update february 1999). Front Biosci 4:D216–D269

    Article  PubMed  CAS  Google Scholar 

  128. Roberts-Thomson IC, Whittingham S, Youngchaiyud U and Mackay IR (1974) Ageing, immune response, and mortality. Lancet 2:368–370

    Article  PubMed  CAS  Google Scholar 

  129. Wayne SJ, Rhyne RL, Garry PJ and Goodwin JS (1990) Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J Gerontol 45:M45–M48

    Article  PubMed  CAS  Google Scholar 

  130. Ferguson FG, Wikby A, Maxson P, Olsson J and Johansson B (1995) Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci 50:B378–B382

    PubMed  CAS  Google Scholar 

  131. Wikby A, Maxson P, Olsson J, Johansson B and Ferguson FG (1998) Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev 102:187–198

    Article  PubMed  CAS  Google Scholar 

  132. Pawelec G and Solana R (2001) Immunoageing—the cause or effect of morbidity. Trends Immunol 22:348–349

    Article  PubMed  CAS  Google Scholar 

  133. Huppert FA, Pinto EM, Morgan K and Brayne C (2003) Survival in a population sample is predicted by proportions of lymphocyte subsets. Mech Ageing Dev 124:449–451

    Article  PubMed  Google Scholar 

  134. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, et al (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60:556–565

    PubMed  Google Scholar 

  135. Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO and Ferguson FG (2000) Agerelated change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121:187–201

    Article  PubMed  CAS  Google Scholar 

  136. Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO and Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37:445–453

    Article  PubMed  CAS  Google Scholar 

  137. Webster A, Phillips AN, Lee CA, Janossy G, Kernoff PB and Griffiths PD (1992) Cytomegalovirus (CMV) infection, CD4+ lymphocyte counts and the development of AIDS in HIV- 1-infected haemophiliac patients. Clin Exp Immunol 88:6–9

    PubMed  CAS  Google Scholar 

  138. Wang EC, Moss PA, Frodsham P, Lehner PJ, Bell JI and Borysiewicz LK (1995) CD8highCD57+ T lymphocytes in normal, healthy individuals are oligoclonal and respond to human cytomegalovirus. J Immunol 155:5046–5056

    PubMed  CAS  Google Scholar 

  139. Fletcher JM, Vukmanovic-Stejic M, Dunne PJ, Birch KE, Cook JE, Jackson SE, et al (2005) Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol 175:8218–8225

    PubMed  CAS  Google Scholar 

  140. Hadrup SR, Strindhall J, Kollgaard T, Seremet T, Johansson B, Pawelec G, et al (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176:2645–2653

    PubMed  CAS  Google Scholar 

  141. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  PubMed  CAS  Google Scholar 

  142. Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, et al (2004) Herpesvirusspecific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 173:7481–7489

    PubMed  CAS  Google Scholar 

  143. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169:1984–1992

    PubMed  CAS  Google Scholar 

  144. Trzonkowski P, Mysliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak LB, et al (2003) Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine 21:3826–3836

    Article  PubMed  CAS  Google Scholar 

  145. Scutellari PN, Orzincolo C and Guarnelli EM (1996) [Periodontal disease in patients with HIV infection. Radiographic study]. Radiol Med (Torino) 92:562–568

    CAS  Google Scholar 

  146. Arpadi SM, Horlick M, Thornton J, Cuff PA, Wang J and Kotler DP (2002) Bone mineral content is lower in prepubertal HIV-infected children. J Acquir Immune Defic Syndr 29:450–454

    PubMed  Google Scholar 

  147. Teichmann J, Stephan E, Discher T, Lange U, Federlin K, Stracke H, et al (2000) Changes in calciotropic hormones and biochemical markers of bone metabolism in patients with human immunodeficiency virus infection. Metabolism 49:1134–1139

    Article  PubMed  CAS  Google Scholar 

  148. Amorosa V and Tebas P (2006) Bone disease and HIV infection. Clin Infect Dis 42:108–114

    Article  PubMed  Google Scholar 

  149. Hsue PY, Lo JC, Franklin A, Bolger AF, Martin JN, Deeks SG, et al (2004) Progression of atherosclerosis as assessed by carotid intima-media thickness in patients with HIV infection. Circulation 109:1603–1608

    Article  PubMed  Google Scholar 

  150. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43:2245–2252

    PubMed  CAS  Google Scholar 

  151. Valcour VG, Shikuma CM, Watters MR and Sacktor NC (2004) Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS 18 Suppl 1:S79–S86.

    PubMed  Google Scholar 

  152. Valcour V and Paul R (2006) HIV infection and dementia in older adults. Clin Infect Dis 42:1449–1454

    Article  PubMed  Google Scholar 

  153. Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M, et al 2007 HIV-1 infection is associated with an earlier occurence of a phenotype related to frailty. AIDS In Press

    Google Scholar 

  154. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156

    PubMed  CAS  Google Scholar 

  155. Chung HY, Kim HJ, Kim JW and Yu BP (2001) The inflammation hypothesis of aging: molecular modulation by calorie restriction. Ann N Y Acad Sci 928:327–335

    Article  PubMed  CAS  Google Scholar 

  156. Bruunsgaard H, Pedersen M and Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136

    Article  PubMed  CAS  Google Scholar 

  157. Cohen HJ, Pieper CF, Harris T, Rao KM and Currie MS (1997) The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci 52:M201–M208

    PubMed  CAS  Google Scholar 

  158. Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, et al (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47:639–646

    PubMed  CAS  Google Scholar 

  159. Ershler WB and Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270

    Article  PubMed  CAS  Google Scholar 

  160. Weaver JD, Huang MH, Albert M, Harris T, Rowe JW and Seeman TE (2002) Interleukin- 6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59:371–378

    PubMed  CAS  Google Scholar 

  161. Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M and Pedersen BK (2000) Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 121:255–260

    Article  PubMed  CAS  Google Scholar 

  162. Dinarello CA (2006) Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83:447S–455S

    PubMed  CAS  Google Scholar 

  163. Merrill JE (1992) Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci 14:1–10

    Article  PubMed  CAS  Google Scholar 

  164. Griffin WS, and Mrak RE. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 2002; 72:233–238.

    PubMed  CAS  Google Scholar 

  165. Chao CC, Hu S, Ehrlich L and Peterson PK (1995) Interleukin-1 and tumor necrosis factoralpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-Daspartate receptors. Brain Behav Immun 9:355–365

    Article  PubMed  CAS  Google Scholar 

  166. McCann SM, Licinio J, Wong ML, Yu WH, Karanth S and Rettorri V (1998) The nitric oxide hypothesis of aging. Exp Gerontol 33:813–826

    Article  PubMed  CAS  Google Scholar 

  167. Conti A, Miscusi M, Cardali S, Germano A, Suzuki H, Cuzzocrea S, et al (2007) Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. Brain Res Rev 54:205–218

    Article  PubMed  CAS  Google Scholar 

  168. Hsue PY, Hunt PW, Sinclair E, Bredt B, Franklin A, Killian M, et al (2006) Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. AIDS 20:2275–2283

    Article  PubMed  Google Scholar 

  169. Schmaltz HN, Fried LP, Xue QL, Walston J, Leng SX and Semba RD (2005) Chronic cytomegalovirus infection and inflammation are associated with prevalent frailty in community- dwelling older women. J Am Geriatr Soc 53:747–754

    Article  PubMed  Google Scholar 

  170. Ginaldi L, De Martinis M, Monti D and Franceschi C (2005) Chronic antigenic load and apoptosis in immunosenescence. Trends Immunol 26:79–84

    Article  PubMed  CAS  Google Scholar 

  171. Franceschi C, Valensin S, Fagnoni F, Barbi C and Bonafe M (1999) Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol 34:911–921

    Article  PubMed  CAS  Google Scholar 

  172. Palella FJ, Jr., Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860

    Article  PubMed  Google Scholar 

  173. Stoll M and Schmidt RE (2004) Immune restoration inflammatory syndromes: apparently paradoxical clinical events after the initiation of HAART. Curr HIV/AIDS Rep 1:122–127

    Article  PubMed  Google Scholar 

  174. Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R, et al (1997) Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277:112–116

    Article  PubMed  CAS  Google Scholar 

  175. Li TS, Tubiana R, Katlama C, Calvez V, Ait Mohand H and Autran B (1998) Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease. Lancet 351:1682–1686

    Article  PubMed  CAS  Google Scholar 

  176. Lederman MM, Connick E, Landay A, Kuritzkes DR, Spritzler J, St Clair M, et al (1998) Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J Infect Dis 178:70–79

    PubMed  CAS  Google Scholar 

  177. Ogg GS, Jin X, Bonhoeffer S, Moss P, Nowak MA, Monard S, et al (1999) Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J Virol 73:797–800

    PubMed  CAS  Google Scholar 

  178. Kalams SA, Goulder PJ, Shea AK, Jones NG, Trocha AK, Ogg GS, et al (1999) Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J Virol 73:6721–6728

    PubMed  CAS  Google Scholar 

  179. Pitcher CJ, Quittner C, Peterson DM, Connors M, Koup RA, Maino VC, et al (1999) HIV- 1-specific CD4 +T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression [see comments]. Nat Med 5:518–525

    Article  PubMed  CAS  Google Scholar 

  180. Rizzardi GP, Harari A, Capiluppi B, Tambussi G, Ellefsen K, Ciuffreda D, et al (2002) Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy. J Clin Invest 109:681–688

    PubMed  CAS  Google Scholar 

  181. Lederman MM, Smeaton L, Smith KY, Rodriguez B, Pu M, Wang H, et al (2006) Cyclosporin A provides no sustained immunologic benefit to persons with chronic HIV-1 infection starting suppressive antiretroviral therapy: results of a randomized, controlled trial of the AIDS Clinical Trials Group A5138. J Infect Dis 194:1677–1685

    Article  PubMed  CAS  Google Scholar 

  182. Czeslick E, Struppert A, Simm A and Sablotzki A (2006) E5564 (Eritoran) inhibits lipopolysaccharide-induced cytokine production in human blood monocytes. Inflamm Res 55:511–515

    Article  PubMed  CAS  Google Scholar 

  183. Savov JD, Brass DM, Lawson BL, McElvania-Tekippe E, Walker JK and Schwartz DA (2005) Toll-like receptor 4 antagonist (E5564) prevents the chronic airway response to inhaled lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 289:L329–L337

    Article  PubMed  CAS  Google Scholar 

  184. Connolly NC, Riddler SA and Rinaldo CR (2005) Proinflammatory cytokines in HIV disease- a review and rationale for new therapeutic approaches. AIDS Rev 7:168–180

    PubMed  Google Scholar 

  185. Messaoudi I, Warner J, Fischer M, Park B, Hill B, Mattison J, et al (2006) Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci U S A 103:19448–19453

    Article  PubMed  CAS  Google Scholar 

  186. Kovacs JA, Vogel S, Albert JM, Falloon J, Davey RT, Jr., Walker RE, et al (1996) Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 335:1350–1356

    Article  PubMed  CAS  Google Scholar 

  187. Mackall CL, Granger L, Sheard MA, Cepeda R and Gress RE (1993) T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood 82:2585–2594

    PubMed  CAS  Google Scholar 

  188. Kendall MD, Fitzpatrick FT, Greenstein BD, Khoylou F, Safieh B and Hamblin A (1990) Reversal of ageing changes in the thymus of rats by chemical or surgical castration. Cell Tissue Res 261:555–564

    Article  PubMed  CAS  Google Scholar 

  189. Greenstein BD, Fitzpatrick FT, Kendall MD and Wheeler MJ (1987) Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J Endocrinol 112:345–350

    Article  PubMed  CAS  Google Scholar 

  190. Kelley KW, Arkins S, Minshall C, Liu Q and Dantzer R (1996) Growth hormone, growth factors and hematopoiesis. Horm Res 45:38–45

    Article  PubMed  CAS  Google Scholar 

  191. Burgess W, Liu Q, Zhou J, Tang Q, Ozawa A, VanHoy R, et al (1999) The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I. Neuroimmunomodulation 6:56–68

    Article  PubMed  CAS  Google Scholar 

  192. Napolitano LA, Lo JC, Gotway MB, Mulligan K, Barbour JD, Schmidt D, et al (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16:1103–1111

    Article  PubMed  CAS  Google Scholar 

  193. Aspinall R and Andrew D (2000) Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18:1629–1637

    Article  PubMed  CAS  Google Scholar 

  194. Andrew D and Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463

    Article  PubMed  CAS  Google Scholar 

  195. Wallace DL, Berard M, Soares MV, Oldham J, Cook JE, Akbar AN, et al (2006) Prolonged exposure of naive CD8+ T cells to interleukin-7 or interleukin-15 stimulates proliferation without differentiation or loss of telomere length. Immunology 119:243–253.

    Article  PubMed  CAS  Google Scholar 

  196. Schindler M, Munch J, Kutsch O, Li H, Santiago ML, Bibollet-Ruche F, et al (2006) Nefmediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125:1055–1067

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Appay, V., Sauce, D. (2009). HIV Infection as a Model of Accelerated Immunosenescence. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_50

Download citation

Publish with us

Policies and ethics