Magnetotactic Bacteria and Their Potential for Terraformation

Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 12)

This paper is focused on magnetotactic bacteria and their possible contributions to the terraformation of Mars or other planets. The potential for terraformation is mainly based on their ability to carry out aerobic or anaerobic respiration with either nitrate or ferric iron, to fix carbon dioxide in the dark using the energy released through the oxidation of inorganic chemicals such as thiosulfate, and to use molecular nitrogen for cell growth. Furthermore, the magnetic assisted taxies, could help magnetotactic bacteria in their navigation toward optimum growth conditions, when a magnetic field is present.

Keywords

Sulfide Respiration Denitrification Microbe Succinate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averner, M. M. and MacElroy, R. D. (1976) On the habitability of Mars: an approach to planetary ecosynthesis. NASA SP-414.Google Scholar
  2. Badescu, V. (2005) Regional and seasonal limitations for Mars Intrinsic Ecopoiesis. Acta Astronaut. 56, 670–680.CrossRefADSGoogle Scholar
  3. Barber, D. J. and Scott, E. R. D. (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc. Natl. Acad. Sci. USA 99, 6556–6561.CrossRefADSGoogle Scholar
  4. Bazylinski, D. A. and Blakemore, R. P. (1983) Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr. Microbiol. 9, 305–308.CrossRefGoogle Scholar
  5. Bazylinski, D. A. and Frankel R. B. (2004) Magnetosome formation in prokaryotes. Nat. Rev. 2, 217–230.CrossRefGoogle Scholar
  6. Bazylinski, D. A. and Moskowitz, B. M. (1997) Microbial biomineralization of magnetic iron minerals: microbiology, magnetism, and environmental significance. In: J. Banfield and K. Nealson (eds.) Geomicrobiology: Interactions Between Microbes and Minerals, vol. 35. Mineralogical Society of America, Washington, DC, pp. 181–224.Google Scholar
  7. Bazylinski, D. A., Frankel, R. B., and Jannasch, H. W. (1988) Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334, 518–519.CrossRefADSGoogle Scholar
  8. Bazylinski, D. A., Frankel, R. B., Heywood, B. R., Mann, S., King, J. W., Donaghay, P. L., and Hanson A. K. (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 61, 3232–3239.Google Scholar
  9. Bazylinski, D. A., Dean, A. J., Schüler, D., Phillips, E. J. P., and Lovley, D. R. (2000) N2-dependent growth andnitrogenase activity in the metal-metabolizing bacteria Geobacter and Magnetospirillum species. Environ. Microbiol. 2, 266–273.CrossRefGoogle Scholar
  10. Bazylinski, D. A., Dean, A. J., Williams, T. J., Long, L. K., Middleton, S. L., and Dubbels, B. L. (2004) Chemolitoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch. Microbiol. 182, 373–387.CrossRefGoogle Scholar
  11. Bazylinski, D. A., Frankel, R. B., and Konhauser, K. O. (2007) Modes of biomineralization of magnetite by microbes. Geomicrobiol. J. 24, 465–475.Google Scholar
  12. Birch, P. (1992) Terraforming Mars quickly. JBIS 45, 331–340.ADSGoogle Scholar
  13. Blakemore, R. P. (1975) Magnetotactic bacteria. Science 190, 377–379.CrossRefADSGoogle Scholar
  14. Blakemore, R. P. (1982) Magnetotactic bacteria. Annu. Rev. Microbiol. 36, 217–238.CrossRefGoogle Scholar
  15. Blakemore, R. P., Maratea, D., and Wolfe, R. S. (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140, 720–729.Google Scholar
  16. Buseck, P. R., Dunin-Borkowski, R. E., Devouard, B., Frankel, R. B., McCartney, M. R., Midgley, P. A., Pósfai, M., and Weyland, M. (2001) Magnetite morphology and life on Mars. Proc. Natl. Acad. Sci. USA 98, 13490–13495.CrossRefADSGoogle Scholar
  17. Butler, R. F. and Banerjee, S. K. (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 80, 252–259.CrossRefADSGoogle Scholar
  18. Flies, C. B., Jonkers, H. M., De Beer, D., Bosselmann, K., Böttcher, M. E., and Schüler, D. (2005) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in fresh-water microcosms. FEMS Microbiol. Ecol. 52, 185–195.CrossRefGoogle Scholar
  19. Fogg, M. J. (1989) The Creation of an artificial, dense Martian atmosphere: a major obstacle to the terraforming of Mars. JBIS 42, 577–582.ADSGoogle Scholar
  20. Fogg, M. J. (1993) Terraforming: a review for environmentalists. The Environmentalist 13, 7–17.CrossRefGoogle Scholar
  21. Fogg, M. J. (1995) Terraforming: Engineering Planetary Environments. SAE International Publisher, Warrendale, PA.Google Scholar
  22. Fogg, M. J. (1998) Terraforming Mars: a review of current research. Adv. Space Res. 3, 415–442.CrossRefADSGoogle Scholar
  23. Frankel, R. B. and Bazylinski, D. A. (2006) How magnetotactic bacteria make magnetosomes queue up. Trends Microbiol. 14, 329–331.CrossRefGoogle Scholar
  24. Frankel, R. B., Bazylinski, D. A., Johnson, M. S., and Taylor, B. L. (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys. J. 73, 994–1000.CrossRefGoogle Scholar
  25. Frankel, R. B., Bazylinski, D. A., and Schüler, D. (1998) Biomineralization of magnetic iron minerals in magnetotactic bacteria. Supramol. Sci. 5, 383–390.CrossRefGoogle Scholar
  26. Friedmann, E. I. and Ocampo-Friedmann, R. (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv. Space Res. 3, 243–246.CrossRefGoogle Scholar
  27. Friedmann, E. I., Hua, M., and Ocampo-Friedmann, R. (1993) Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. JBIS 46, 291–292.ADSGoogle Scholar
  28. Fukumori, Y., Oynagi, H., Yoshimatsu, K., Noguchi, Y., and Fujiwara, T. (1997) Enzymatic iron oxidation and reduction in magnetite synthesizing Magnetospirillum magnetotacticum. J. Phys. IV 7, 659–666.CrossRefGoogle Scholar
  29. Gerstell, M. F., Francisco, J. S., Yung, Y. L., Boxe, C., and Aaltonee E. T. (2001) Keeping Mars warm with new super greenhouse gases. Proc. Natl. Acad. Sci. USA 98, 2154–2157.CrossRefADSGoogle Scholar
  30. Gorby, Y. A., Beveridge, T. J., and Blakemore, R. P. (1988) Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170, 834–841.Google Scholar
  31. Grünberg, K., Müller, E. C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R., and Schüler, D. (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70, 1040–1050.CrossRefGoogle Scholar
  32. Guerin, W. F. and Blakemore, R. P. (1992) Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 58, 1102–1109Google Scholar
  33. Hancox, C. R. (1999) Terraformation of Mars. In: R. M. Zubrin and M. Zubrin (eds.) Proceedings of the Founding Convention of the Mars Society, Part III. Univelt Publisher, San Diego, CA, pp. 905–935.Google Scholar
  34. Haynes, R. H. and McKay, C. P. (1992) The implantation of life on mars: feasibility and motivation. Adv. Space Res. 12, 133–140.CrossRefADSGoogle Scholar
  35. Heyen, U. and Schüler, D. (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544.Google Scholar
  36. Hiscox, J. A. (2000a) Biology and the Planetary Engineering of Mars. In: K. R. McMillen (ed.) The Case for Mars VI. Univelt Publisher, San Diego, CA, pp. 453–481.Google Scholar
  37. Hiscox, J. A. (2000b) Selecting pioneer microorganisms for Mars. In: K. R. McMillen (ed.) The Case for Mars VI. Univelt, San Diego, CA, pp. 491–503.Google Scholar
  38. Hiscox, J. A. and Thomas, D. J. (1995) Modification and selection of microorganisms for growth on Mars. J. Brit. Inter. Soc. 48, 419–426.Google Scholar
  39. Jukes, H. (1991) Mars as a new abode for microbial life. J. Molec. Evol. 32, 355–357.CrossRefGoogle Scholar
  40. Kasama, T., Posfai, M., Chong, R. K. K., Finlayson, A. P., Buseck, P. R., Frankel, R. B., and Dunin-Borkowski, R. E. (2006) Magnetic properties, micro structure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral. 91, 1216–1229.CrossRefGoogle Scholar
  41. Keim, C. N., Abreu, F., Lins, U., Lins de Barros, H., and Farina, M. (2004) Cell organization and ultrastructure of a magnetotactic multicellular organism. J. Struct. Biol. 145, 254–262.CrossRefGoogle Scholar
  42. Lins, U., Keim, C. N., Evans, F. F., Farina, M., and Buseck, P. R. (2007) Magnetite (Fe3O4) and greigite (Fe3S4) crystals in magnetotactic multicellular organisms. Geomicrobiol. J. 24, 43–50.CrossRefGoogle Scholar
  43. Mann, S., Sparks, N. H. C., and Board, R. G. (1990) Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. Adv. Microbiol. Physiol. 31, 125–181.CrossRefGoogle Scholar
  44. Marinova, M. M., McKay C. P., and Hashimoto, H. (2000) Warming Mars using artificial super-greenhouse gases. JBIS 53, 235–240.Google Scholar
  45. Matsunaga, T., Tsujimura, N., Okamura, H., and Takeyama, H. (2000) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem. Biophy. Res. Commun. 268, 932–937.CrossRefGoogle Scholar
  46. McKay, C. P. and Marinova, M. M. (2001) The Physics, Biology and Environmental Ethics of making Mars habitable. Astrobiology 1, 89–109.CrossRefADSGoogle Scholar
  47. McKay, C. P., Toon, O. B., and Kasting, J. F. (1991) Making Mars habitable. Nature 352, 489–496.CrossRefADSGoogle Scholar
  48. McKay, C. P., Friedman, E. I., Frankel, R. B., and Bazylinski, D. A. (2003) Magnetotactic bacteria on Earth and on Mars. Astrobiology 2, 263–270.CrossRefADSGoogle Scholar
  49. Moench, T. T. and Konetzka, W. A. (1978) A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119, 203–212.CrossRefGoogle Scholar
  50. Moisescu, C., Dumitru, L., and Ardelean, I. (2005) The growth of the magnetotactic bacterium Magnetospirillum gryphiswaldense under microaerobic conditions. Proceedings of the Institute of Biology of the Romanian Academy 7, 207–210.Google Scholar
  51. Murray, J., Codispoti, L., and Friedrich, G. (1995) Oxidation-reduction environments: the suboxic zone in Black Sea. In: C. P. Huang, C. R. O’Melia and J. J. Morgan (eds.) Aquatic Chemistry, vol. 244. American Chemical Society, Washington, DC, pp. 157–176.CrossRefGoogle Scholar
  52. Nienow, J. A., McKay, C. P., and Friedmann, E. I. (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb. Ecol. 16, 271–289.CrossRefGoogle Scholar
  53. Nussinov, M. D., Lysenko, S. V., and Patrikeev, V. V. (1994) Terraforming of Mars through terrestrial microorganisms and nanotechnological devices. J. Brit. Interplanet. Soc. 47, 319–320.Google Scholar
  54. Petermann, H. and Bleil, U. (1993) Detection of live magnetotactic bacteria in South-Atlantic deep-sea sediments. Earth Planet. Sci. Lett. 117, 223–228.CrossRefADSGoogle Scholar
  55. Petersen, N., Weiss, D. G., and Vali, H. (1989) Magnetic bacteria in lake sediments. In: F. J. Lowes, D. W. Collinson, J. H. Parry, S. K. Runcorn, T. D. C., and A. Soward (eds.) Geomagnetism and Paleomagnetism. Kluwer, Dordrecht, pp. 231–241.Google Scholar
  56. Popoviciu, D. R. (2006) Some Ideas Regarding the Biological Colonization of Planet Mars. http://www.redcolony.com
  57. Rodgers, F., Blakemore, R. P., Frankel, R. B., Bazylinski, D., Maratea, D., and Rodgers, C. (1990) Intercellular junctions, motility and magnetosome structure in a multicellular magnetotactic prokaryote. In: R. B. Frankel and R. B. Blakemore (eds.) Iron Biominerals. Plenum, New York, pp. 231–238.Google Scholar
  58. Sagan, C. (1961) The planet Venus. Science 133, 849–858.CrossRefADSGoogle Scholar
  59. Sagan, C. (1973) Planetary engineering on Mars. Icarus 20, 513–514.CrossRefADSGoogle Scholar
  60. Schübbe, S., Kube, M., Scheffel, A., Wawer, C., Heyen, U., Meyerdierks, A., Madkour, M., Mayer, F., Reinhardt, R., and Schüler, D. (2003) Characterization on a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185, 5779–5790.CrossRefGoogle Scholar
  61. Schüler, D. (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch. Microbiol. 181, 1–7.CrossRefGoogle Scholar
  62. Schüler, D. and Baeuerlein, E. (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180, 159–162.Google Scholar
  63. Schüler, D. and Frankel, R. B. (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52, 464–473.CrossRefGoogle Scholar
  64. Short, K. A. and Blakemore, R. P. (1986) Iron respiration-driven proton translocation in aerobic bacteria. J. Bacteriol. 167, 729–731.Google Scholar
  65. Smith, M. J., Sheehan, P. E., Perry, L. L., O’Connor, K., Csonka, L. N., Applegate, B. M., and Whitman, L. J. (2006) Quantifying the magnetic advantage in magnetotaxis. Biophys. J. 91, 1098–1107.CrossRefADSGoogle Scholar
  66. Spring, S., Amann, R., Ludwig, W., Schleifer, K. H., Van Gemerden, H., and Petersen, N. (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol. 59, 2397–2403.Google Scholar
  67. Stephens, C. (2006) Bacterial cell biology: managing magnetosomes. Curr. Biol. 16, R363–R365.CrossRefGoogle Scholar
  68. Stolz, J. F. (1992) Magnetotactic bacteria: biomineralization, ecology, sediment magnetism, environmental indicator. In: H. C. W Skinner (ed.) Biomineralization: Processes of Iron and Manganese; Modern and Ancient Environments. Catena-Verlag, Cremlingen-Destedt, pp. 133–145.Google Scholar
  69. Stolz, J. F (1993) Magnetosomes. J. Gen. Microbiol. 139, 1663–1670.Google Scholar
  70. Tamegai, H., Yamanaka, T., and Fukumori, Y. (1993) Purification and properties of a ‘cytochrom a0l’-like hemoprotein from a magnetotactic bacterium, Aquaspirillummagnetotacticum. Biochim. Biophys. Acta. 1158, 137–243.Google Scholar
  71. Tanaka, M., Okamura, Y., Arakaki, A., Tanaka, T., Takeyama, H., and Matsunaga, T. (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6, 5234–5247.CrossRefGoogle Scholar
  72. Taylor, A. P., Barry, J. C., and Webb, R. I. (2001) Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH84001. J. Microscopy 201, 84–106.CrossRefMathSciNetGoogle Scholar
  73. Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink, J. L., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr., and Romanek, C. S. (2002) Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl. Environ. Microbiol. 68, 3663–3672.CrossRefGoogle Scholar
  74. Urban, J. E. (2000) Adverse effects of microgravity on the magnetotactic bacterium Magnetospirillum magnetotacticum. Acta Astronaut. 10, 775–780.CrossRefGoogle Scholar
  75. Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., and Komeili, A. (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc. Natl. Acad. Sci. USA 101, 8281–8284.CrossRefADSGoogle Scholar
  76. Williams, T. J., Zhang, C. L., Scott, J. H., and Bazylinski, D. A. (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol. 72, 1322–1329.CrossRefGoogle Scholar
  77. Yamazaki, T., Oyanagi, H., Fujiwara, T., and Fukumori, Y. (1995) Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum — a novel cytochrome-cd(1) with Fe(II)-nitrite oxidoreductase activity. Eur. J. Biochem. 233, 665–671.CrossRefGoogle Scholar
  78. Zopfi, J. T., Ferdelman, T. G., Jorgensen, B. B., Teske, A., and Thamdrup, B. (2001) Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar. Chem. 74, 29–51.CrossRefGoogle Scholar
  79. Zubrin, R. and Wagner, R. (ed.) (1996) The Case for Mars: The Plan to Settle the Red Planet and Why We Must. Free Press, New York.Google Scholar
  80. Zubrin, R. M. and McKay, C. P. (1997) Technological requirements for terraforming Mars. JBIS 50, 83–92.Google Scholar
  81. Mars Global Surveyor — Magnetic Field Experiment. http://mgs-mager.gsfc.nasa.gov

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Center of MicrobiologyInstitute of BiologyBucharestRomania
  2. 2.“Ovidius” University Faculty of Natural Sciences ConstantzaRomania

Personalised recommendations