Skip to main content

A Nonlinear Finite Element Framework for Flexible Multibody Dynamics: Rotationless Formulation and Energy-Momentum Conserving Discretization

  • Chapter
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 12))

  • 2293 Accesses

A uniform framework for rigid body dynamics and nonlinear structural dynamics is presented. The advocated approach is based on a rotationless formu lation of rigid bodies, nonlinear beams and shells. In this connection, the specific kinematic assumptions are taken into account by the explicit incorporation of holo-nomic constraints. This approach facilitates the straightforward extension to flexible multibody dynamics by including additional constraints due to the interconnection of rigid and flexible bodies. We further address the design of energy-momentum schemes for the stable numerical integration of the underlying finite-dimensional mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. .Bauchau OA, Bottasso CL (1999) On the design of energy preserving and decaying schemes for flexible, nonlinear multi-body systems. Comput Meth Appl Mech Eng 169:61–79

    Article  MATH  MathSciNet  Google Scholar 

  2. .Bauchau OA, Choi JY, Bottasso CL (2002) On the modeling of shells in multi-body dynamics. Mult Syst Dyn 8:459–489

    Article  MATH  Google Scholar 

  3. .Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  4. .Betsch P (2005) The discrete null space method for the energy consistent inte gration of constrained mechanical systems. Part I: Holonomic constraints. Com put Methods Appl Mech Eng 194(50–52):5159–5190

    Article  MATH  MathSciNet  Google Scholar 

  5. Betsch P, Hesch C (2007) Energy-momentum conserving schemes for frictionless dynamic contact problems. Part I: NTS method. In: Wriggers P, Nackenhorst U (eds) IUTAM Symposium on Computational Methods in Contact Mechanics. Volume 3 of IUTAM Bookseries, pp 77–96. Springer

    Google Scholar 

  6. .Betsch P, Leyendecker S (2006) The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. Int J Numer Meth Eng 67(4):499–552

    Article  MATH  MathSciNet  Google Scholar 

  7. Betsch P, S¨anger N (2007) On the use of geometrically exact shells in a con serving framework for flexible multibody dynamics. In preparation.

    Google Scholar 

  8. .Betsch P, Steinmann P (2001) Conservation properties of a time FE method. Part II: Time-stepping schemes for nonlinear elastodynamics. Int J Numer Meth Eng 50:1931–1955

    Article  MATH  MathSciNet  Google Scholar 

  9. .Betsch P, Steinmann P (2001) Constrained integration of rigid body dynamics. Comput Methods Appl Mech Eng 191:467–488

    Article  MATH  MathSciNet  Google Scholar 

  10. .Betsch P, Steinmann P (2002) Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints. Int J Numer Meth Eng 53:2271–2304

    Article  MATH  MathSciNet  Google Scholar 

  11. .Betsch P, Steinmann P (2002) A DAE approach to flexible multibody dynamics. Mult Syst Dyn 8:367–391

    MATH  MathSciNet  Google Scholar 

  12. .Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Meth Eng 54:1775– 1788

    Article  MATH  MathSciNet  Google Scholar 

  13. .Betsch P, Uhlar S (2007) Energy-momentum conserving integration of multi-body dynamics. Mult Syst Dyn 17(4):243–289

    Article  MATH  MathSciNet  Google Scholar 

  14. .Bottasso CL, Borri M, Trainelli L (2001) Integration of elastic multibody sys tems by invariant conserving/dissipating algorithms. II. Numerical schemes and applications. Comput Methods Appl Mech Eng 190:3701–3733

    Article  MathSciNet  Google Scholar 

  15. .Bottasso CL, Borri M, Trainelli L (2002) Geometric invariance. Comput Mech 29(2):163–169

    Article  MATH  MathSciNet  Google Scholar 

  16. .Brank B, Korelc J, Ibrahimbegović A (2003) Dynamics and time-stepping schemes for elastic shells undergoing finite rotations. Comput & Struct 81(12): 1193–1210

    Article  Google Scholar 

  17. .Büchter N, Ramm E (1992) Shell theory versus degeneration — A comparison in large rotation finite element analysis. Int J Numer Methods Eng 34:39–59

    Article  MATH  Google Scholar 

  18. .Crisfield MA (1991) Non-linear finite element analysis of solids and structures. Volume 1: Essentials. Wiley, New York

    Google Scholar 

  19. .Garíia de Jalón J (2007) Twenty-five years of natural coordinates. Mult Syst Dyn 18(1):15–33

    Article  MATH  Google Scholar 

  20. .Géradin M, Cardona A (2001) Flexible multibody dynamics: A finite element approach. Wiley, New York

    Google Scholar 

  21. .Goicolea JM, Garcia Orden JC (2000) Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes. Comput Meth Appl Mech Eng 188:789–804

    Article  MATH  MathSciNet  Google Scholar 

  22. .Gonzalez O (1999) Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration. Physica D 132: 165–174

    Article  MATH  MathSciNet  Google Scholar 

  23. .Gonzalez O, Simo JC (1996) On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Comput Methods Appl Mech Eng 134:197–222

    Article  MATH  MathSciNet  Google Scholar 

  24. .Göttlicher B, Schweizerhof K (2005) Analysis of flexible structures with occa sionally rigid parts under transient loading. Comput & Struct 83:2035–2051

    Article  Google Scholar 

  25. .Ibrahimbegović A, Mamouri S, Taylor RL, Chen AJ (2000) Finite element method in dynamics of flexible multibody systems: Modeling of holonomic constraints and energy conserving integration schemes. Multy Syst Dyn 4(2– 3): 195–223

    Article  MATH  Google Scholar 

  26. .Jelenić G, Crisfield MA (2001) Dynamic analysis of 3D beams with joints in presence of large rotations. Comput Methods Appl Mech Engrg 190:4195–4230

    Article  MATH  Google Scholar 

  27. .Kuhl D, Ramm E (1999) Generalized energy-momentum method for non-linear adaptive shell dynamics. Comput Meth Appl Mech Eng 178:343–366

    Article  MATH  MathSciNet  Google Scholar 

  28. .Kunkel P, Mehrmann V (2006) Differential-algebraic equations. European Mathematical Society, Zurich

    MATH  Google Scholar 

  29. .Leyendecker S, Betsch P, Steinmann P (2008) The discrete null space method for the energy consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. Mult Syst Dyn 19(1–2):45–72

    Article  MATH  MathSciNet  Google Scholar 

  30. .Muñoz J, Jelenić G, Crisfield MA (2003) Master-slave approach for the mod elling of joints with dependent degrees of freedom in flexible mechanisms. Com mun Numer Meth Eng 19:689–702

    Article  MATH  Google Scholar 

  31. .Puso MA (2002) An energy and momentum conserving method for rigid-flexible body dynamics. Int J Numer Meth Eng 53:1393–1414

    Article  MATH  MathSciNet  Google Scholar 

  32. .Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133

    Article  MATH  MathSciNet  Google Scholar 

  33. .Romero I, Armero F (2002) Numerical integration of the stiff dynamics of geometrically exact shells: An energy-dissipative momentum-conserving scheme. Int J Numer Meth Eng 54:1043–1086

    Article  MATH  MathSciNet  Google Scholar 

  34. .Romero I, Armero F (2002) An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Meth Eng 54:1683–1716

    Article  MATH  MathSciNet  Google Scholar 

  35. .Rosenberg RM (1977) Analytical dynamics of discrete systems. Plenum, New York

    MATH  Google Scholar 

  36. .Sansour C, Wagner W, Wriggers P, Sansour J (2002) An energy-momentum integration scheme and enhanced strain finite elements for the non-linear dy namics of shells. Non-linear Mech 37:951–966

    Article  MATH  Google Scholar 

  37. .Simo JC, Rifai MS, Fox DD (1992) On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non-linear dynamics. Int J Numer Meth Eng 34:117–164

    Article  MATH  MathSciNet  Google Scholar 

  38. .Simo J, Tarnow N (1992) The discretes energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43:757– 792

    Article  MATH  MathSciNet  Google Scholar 

  39. .Simo JC, Tarnow N (1994) A new energy and momentum conserving algorithm for the nonlinear dynamics of shells. Int J Num Meth Eng 37:2527–2549

    Article  MATH  MathSciNet  Google Scholar 

  40. .Taylor RL (2001) Finite element analysis of rigid-flexible systems. In: Ambŕosio JAC, Kleiber M (eds) Computational aspects of nonlinear structural systems with large rigid body motion. Volume 179 of NATO Science Series: Computer & Systems Sciences, pp 63–84. IOS Press, Amsterdam

    Google Scholar 

  41. .Uhlar S, Betsch P (2007) On the rotationless formulation of multibody dy namics and its conserving numerical integration. In: Bottasso CL, Masarati P, Trainelli L (eds) Proceedings of the ECCOMAS Thematic Conference on Multi-body Dynamics, Politecnico di Milano, Milano

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betsch Peter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Peter, B., Sänger, N. (2009). A Nonlinear Finite Element Framework for Flexible Multibody Dynamics: Rotationless Formulation and Energy-Momentum Conserving Discretization. In: Bottasso, C.L. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8829-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8829-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8828-5

  • Online ISBN: 978-1-4020-8829-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics