Skip to main content

Technological Challenges: Asbestos Past Experiences, Nanoparticles Future Developments

  • Chapter
Women in Biotechnology
  • 549 Accesses

Abstract

Science and technology are the main components of economic and social development, and globalization. They are, on the one hand, responsible for improvement in the quality of life, but on the other hand, if technological processes are applied prior to their toxicity evaluation and safety testing, they may also become unfriendly. It is therefore necessary to implement any new technology only after it has undergone complete risk assessment studies. The biotechnological revolution, also called the Life Science Revolution, and the new technologies available to it are claimed to have the potential to change everything about our society. Among the newest tools is the concept known as nanotechnology, the science of small particles. The advocates of nanotechnology predict that it will revolutionize the field of engineering, electronics, medicine, IT etc. However, present studies suggest that it also poses a number of threats to human health.

The use of nanotechnology techniques without prior human health evaluations faces society with the possibility that they could become the ‘asbestos’ of the twenty-first century. Asbestos was discovered in 1878 and became a common, highly desirable component in thousands of products and industrial applications all over the world. Only later was it realized that prolonged exposure to asbestos causes Asbestosis, Malignant Mesothelioma and Bronchogenic Carcinoma. These diseases were identified only after a long latency period. Unfortunately, many nanotechnology-related products are already on the market and in use without having undergone adequate safety evaluations. Serious adverse health effects can emerge when engineered NPs (nanoparticles), which in general were not properly characterized regarding their biohazard potential, are administered to humans intentionally (e.g., for medicinal purposes) or unintentionally (e.g., in the course of regular or accidental industrial processes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansari, F. A., Ahmad, I., Ashquin, M., Yunus, M., & Rahman, Q. (2007). Monitoring and identification of airborne asbestos in unorganized sectors, India. Chemosphere, 68(4), 716–723.

    Article  PubMed  CAS  Google Scholar 

  • Bazile, D. V., Ropert, C., Huve, P., Verrecchia, T., Marlard, M., Frydman, A., Veillard, M., & Spenlehauer, G. (1992). Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials, 13(15), 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  • Bermudez, E., Mangum, J. B., Asgharian, B., Wong, B. A., Reverdy, E. E., Janszen, D. B., Hext, P. M., Warheit, D. B., & Everitt, J. I. (2002). Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicological Sciences: An Official Journal of the Society of Toxicology, 70(1), 86–97.

    CAS  Google Scholar 

  • Bermudez, E., Mangum, J. S., Wong, B. A., Asgharian, B., Hext, P. M., Warheit, D. B., & Everitt, J. L. (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological sciences: An Official Journal of the Society of Toxicology, 77(2), 347–357.

    CAS  Google Scholar 

  • Bodian, D., & Howe, H. A. (1941). Experimental studies on intraneural spread of poliomyelitis virus. Bulletin of the Johns Hopkins Hospital, 68, 248–267.

    Google Scholar 

  • Borm, P. J. A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R. P. F., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D., & Oberdörster, E. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11.

    Article  PubMed  CAS  Google Scholar 

  • Brumfiel, G. (2003). Nanotechnology: A little knowledge. Nature, 424(6946), 246–248.

    Article  PubMed  CAS  Google Scholar 

  • Calderón-Garcidueñas, L., Azzarelli, B., Acuna, H., Garcia, R., Gambling, T. M., Osnaya, N., Monroy, S., Del Tizapantzi, M. R., Carson, J. L., Villarreal-Calderon, A., & Rewcastle, B. (2002). Air pollution and brain damage. Toxicologic Pathology, 30(3), 373–389.

    Article  PubMed  Google Scholar 

  • Churg, A., Stevens, B., & Wright, J. (1998). Comparison of the uptake of fine and ultrafine TIO2 in a tracheal explant system. The American Journal of Physiology, 274(Pt 1), L81–L86.

    PubMed  CAS  Google Scholar 

  • Craighead, J. E., & Mossman, B. T. (1982). The pathogenesis of asbestos associated diseases. The New England Journal of Medicine, 306(24), 1446–1455.

    PubMed  CAS  Google Scholar 

  • Davies, R. (1980). The effect of dust on enzyme release from macrophages. In: R. C. Brown, I. P. Gormley, M. Chamberlain, & R. Davies (Eds.), In vitro effects of mineral dust (pp. 67). London: Academic.

    Google Scholar 

  • Derfus, A. M., Chan, W. C. W., & Bhatia, S. N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 4(1), 11–18.

    Article  CAS  Google Scholar 

  • Dopp, E., Yadav, S., Furquan, A. A., Rödelsperger, K., Von Recklinghausen, U., Rauen, U., Florea, A.-M., & Rahman, Q. (2005). ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro. Particle and Fibre Toxicology, 2, 9.

    Article  PubMed  CAS  Google Scholar 

  • Dreher, K. L. (2004). Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles. Toxicological Sciences: An Official Journal of the Society of Toxicology, 77(1), 3–5.

    CAS  Google Scholar 

  • Fechter, L. D., Johnson, D. L., & Lynch, R. A. (2002). The relationship of particle size to olfactory nerve uptake of a non-soluble form of manganese into brain. Neurotoxicology, 23(2), 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Ferin, J., & Oberdörster, G. (1992).Translocation of particles from pulmonary alveoli into the interstitium. Journal of Aerosol Medicine: The Official Journal of the International Society for Aerosols in Medicine, 5(3), 179–187.

    Google Scholar 

  • Ferin, J., Oberdörster, G., & Penney, D. P. (1992). Pulmonary retention of ultrafine and fine particles in rats. American Journal of Respiratory Cell and Molecular Biology, 6(5), 535–542.

    PubMed  CAS  Google Scholar 

  • Ferin, J., Oberdörster, G., Soderholm, S. C., & Gelein, R. (1991). Pulmonary tissue access of ultrafine particles. Journal of Aerosol Medicine: The Official Journal of the International Society for Aerosols in Medicine, 4(1), 57–68.

    Google Scholar 

  • Fraser, R. G., Pare, P. D., Fraser, R. S., & Genereux, G. P. (Eds.) (1990). Pleuro-pulmonary disease caused by inspiration of inorganic dust (pneumoconiosis). Diagnosis of Disease of the Chest (Vol. III, pp. 2346). Philadelphia: W.B. Saunders.

    Google Scholar 

  • Fubini, B. (1997). Surface reactivity in the pathogenic response to particulates. Environmental Health Perspectives, 105(Suppl. 5), 1013–1020.

    Article  PubMed  Google Scholar 

  • Gianutsos, G., Morrow, G. R., & Morris, J. B. (1997). Accumulation of manganese in rat brain following intranasal administration. Fundamental and Applied Toxicology, 37(2), 102–105.

    Article  PubMed  CAS  Google Scholar 

  • Giles, J. (2003). Nanotechnology: What is there to fear from something so small? Nature, 426(6968), 750.

    PubMed  CAS  Google Scholar 

  • Gwinn, M. R., & Vallyathan, V. (2006). Nanoparticles: Health effects, pros and Cons. Environmental Health Perspectives, 114(12), 1818–1825.

    PubMed  CAS  Google Scholar 

  • Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. The Science of the Total Environment, 326(1–3), 1–31.

    PubMed  CAS  Google Scholar 

  • Henson, M. C., & Chedrese, P. J. (2004). Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Experimental Biology and Medicine (Maywood, N.J.), 229(5), 383–392.

    CAS  Google Scholar 

  • Howe, H. A., & Bodian, D. (1940). Portals of entry of poliomyelitis virus in the chimpanzee. Proceedings of the Society for Experimental Biology and Medicine, 43, 718–721.

    Google Scholar 

  • Jani, P., Halbert, G. W., Langridge, J., & Florence, A. T. (1990). Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. The Journal of Pharmacy and Pharmacology, 42(12), 821–826.

    PubMed  CAS  Google Scholar 

  • Jani, P. U., McCarthy, D. E., & Florence, A. T. (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. International Journal of Pharmaceutics, 105(2), 157–168.

    Article  CAS  Google Scholar 

  • Kamp, D. W., & Weitzman, S. A. (1997). Asbestosis: clinical spectrum and pathogenic mechanisms. Proceedings of the Society for Experimental Biology and Medicine, 214(1), 12–26.

    PubMed  CAS  Google Scholar 

  • Kamp, D. W., & Weitzman, S. A. (1999). The molecular basis of asbestos induced lung injury. Thorax, 54(7), 638–652.

    Article  PubMed  CAS  Google Scholar 

  • Khan, S. G., Ali, S., & Rahman, Q. (1992). Interaction of mineral fibers with lung cytochrome P-450 system: impairments in the activities of it’s dependent and independent drug metabolising enzymes. Chemosphere, 24(8), 959–968.

    Article  CAS  Google Scholar 

  • Kim, S., Lim, Y. T., Soltesz, E. G., De Grand, A. M., Lee, J., Nakayama, A., Parker, J. A., Mihaljevic, T., Laurence, R. G., Dor, D. M., Cohn, L. H., Bawendi, M. G., & Frangioni, J. V. (2004). Near infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnology, 22(1), 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J. (2004). Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. Journal of Nanoscience and Nanotechnology, 4(5), 484–488.

    Article  PubMed  CAS  Google Scholar 

  • Kreyling, W. G., Semmler-Behnke, M., & Moller, W. (2006). Ultrafine particle-lung interactions: does size matter? Journal of Aerosol Medicine: The Official Journal of the International Society for Aerosols in Medicine, 19(1), 74–83.

    CAS  Google Scholar 

  • Kulkarni, G. K. (2001). Asbestos: ban or not to ban. Indian Journal of Occupational and Environmental Medicines, 5(1).

    Google Scholar 

  • Lam, C. W., James, J. T., McCluskey, R., & Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences: An Official Journal of the Society of Toxicology, 77(1), 126–134.

    CAS  Google Scholar 

  • Lockman, P. R., Koziara, J. M., Mumper, R. J., & Allen, D. D. (2004). Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Journal of Drug Targeting, 12(9–10), 635–641.

    Article  PubMed  CAS  Google Scholar 

  • Lohani, M., Dopp, E., Weiss, D. G., Schiffmann, D., & Rahman, Q. (2000). Kerosene soot induces genotoxicity and enhance the effect on co-exposure with chrysotile asbestos in Syrian Hamster Embryo Fibroblast. Toxicology Letters, 114(1–3), 111–116.

    Article  PubMed  CAS  Google Scholar 

  • Lohani, M., Dopp, E., Becker, H. H., Seth, K., Schiffmann, D., & Rahman, Q. (2002). Smoking enhances asbestos-induced genotoxicity, relative involvement of chromosome 1: a study using multicolor FISH with tandem labeling. Toxicology Letters, 136(1), 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Mansinghka, B. K., & Ranawat, P. S. (1996). Mineral Economics and occupational health hazards of the Asbestos Resources of Rajasthan. Journal of the Geological Society of India, 47, 375–382.

    Google Scholar 

  • Matsudai, M., & Hunt, G. (2005). Nanotechnology and public health. Nippon ko¯shu¯ eisei zasshi, 52(11), 923–927.

    Google Scholar 

  • Maynard, A. D., Baron, P. A., Foley, M., Shvedova, A., Kisin, E. R., & Castranova, V. (2004). Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. Journal of Toxicology and Environmental Health. Part A, 67(1), 87–107.

    Article  PubMed  CAS  Google Scholar 

  • Maynard, A. D., & Kuempel, E. (2005). Airborne nanostructured particles and occupational health. Journal of Nanoparticle Research, 7(6), 587–614.

    Article  CAS  Google Scholar 

  • McDonald, J. C., McDonald, A. D., & Hughes, J. M. (1999). Chrysotile, tremolite and fibrogenecity. The Annals of Occupational Hygiene, 43(7), 439–442.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro-Riviere, N. A., Nemanich, R. J., Inman, A. O., Wang, Y. Y., & Riviere, J. E. (2005). Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicology Letters, 155(3), 377–384.

    Article  PubMed  CAS  Google Scholar 

  • Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32(8), 967–976.

    Article  PubMed  CAS  Google Scholar 

  • Mossman, B. T., Bignon, J., Corn, M., Seaton, A., & Gee, J. B. L. (1990). Asbestos: scientific developments and implications for public policy. Science, 247(4940), 294–301.

    Article  PubMed  CAS  Google Scholar 

  • Mossman, B. T., Borm, P. J., Castranova, V., Costa, D. L., Donaldson, K., & Kleeberger, S. R. (2007). Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Particle and Fibre Toxicology, 4, 4.

    Article  PubMed  Google Scholar 

  • Mossman, B. T., & Gee, J. B. L. (1989). Asbestos-related diseases. The New England Journal of Medicine, 320(26), 1721–1730.

    PubMed  CAS  Google Scholar 

  • Mossman, B. T., Kamp, D. W., & Weitzman, S. A. (1996). Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers. Cancer Investigation, 14(5), 464–78.

    Article  Google Scholar 

  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627.

    Article  PubMed  CAS  Google Scholar 

  • Nemmar, A., Hoet, P. H. M., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M. F., Vanbilloen, H., Mortelmans, L., & Nemery B. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105(4), 411–414.

    Article  PubMed  CAS  Google Scholar 

  • Nikula, K. J., Avila, K. J., Griffith, W. C., & Mauderly, J. L. (1997). Lung tissue responses and sites of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust. Microscopy Research and Technique, 37(1), 37–53.

    CAS  Google Scholar 

  • Oberdörster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental Health Perspectives, 112(10), 1058–1062.

    PubMed  Google Scholar 

  • Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823–839.

    PubMed  Google Scholar 

  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling W., & Cox, C. (2002); Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health. Part A, 65(20), 1531–1543.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., Veronesi, B., Calderón-Garcidueñas, L., Gehr, P., Chen, L. C., Geiser, M., Reed, W., Rothen-Ruthishauser, B., Schürch, S., & Schulz, H. (2006). Translocation and potential neurological effects of fine and ultrafine particles: A critical update. Particle and Fibre Toxicology, 3, 13.

    Article  PubMed  CAS  Google Scholar 

  • Poser, I., Rahman, Q., Lohani, M., Yadav, S., Becker, H. H., Weiss, D. G., Schiffmann, D., & Dopp, E. (2004). Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor. Mutation Research, 559(1–2), 19–27.

    PubMed  CAS  Google Scholar 

  • Powell, M. C., & Kanarek, M. S. (2006a). Nanomaterial health effects. Part 1, Background and current knowledge. WMJ: Official Publication of the State Medical Society of Wisconsin, 105(2), 16–20.

    Google Scholar 

  • Powell M. C., & Kanarek, M. S. (2006b). Nanomaterial health effects. Part 2, Uncertainties and recommendations for the future. WMJ: Official Publication of the State Medical Society of Wisconsin, 105(3), 18–23.

    Google Scholar 

  • Rahman, Q. (1995). Asbestos: an occupational and environmental carcinogen. In B. B. Dhar & D. N. Thakur (Eds.), Mining and environment (pp. 549–564). New Delhi: Oxford & IBH Publishing.

    Google Scholar 

  • Rahman, Q., Dopp, E., & Schiffmann, D. (2000a). Genotoxic effects of asbestos fibers. In G. A. Peters & B. J. Peters (Eds.), Sourcebook on asbestos diseases (Vol. 21, pp. 223–242). New Hampshire: Butterworth Legal Publishers.

    Google Scholar 

  • Rahman, Q., Dopp, E., Lohani, M., & Schiffmann, D. (2000b). Occupational and environmental factors enhancing the genotoxicity of asbestos. Inhalation Toxicology, 12, 157–163.

    Article  CAS  Google Scholar 

  • Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D. G., & Schiffmann, D. (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental Health Perspectives, 110(8), 797–800.

    PubMed  CAS  Google Scholar 

  • Rahman, Q., Mahmood, N., Khan, S. G., Arif, J. M., & Athar, M. (1997). Mechanisms of asbestos mediated DNA damage: Role of heme and heme proteins. Environmental Health Perspectives, 105, 1109–1112.

    Article  PubMed  Google Scholar 

  • Ramanathan, A. L., & Subramanian, V. (2001). Present status of asbestos mining and related health problems in India: a survey. Industrial Health, 39(4), 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Roco, M. C. (2005). Environmentally responsible development of nanotechnology. Environmental Science & Technology, 39(5), 106A–112A.

    Article  CAS  Google Scholar 

  • Satarug, S., & Moore, M. R. (2004). Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental Health Perspectives, 112(10), 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  • Sayes, C. M., Gobin, A. M., Ausman, K. D., Mendez, J., West, J. L., & Colvin, V. L. (2005). Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 26(36), 7587–7595.

    Article  PubMed  CAS  Google Scholar 

  • Seaton, A., & Donaldson, K. (2005). Nanoscience, nanotoxicology, and the need to think small. Lancet, 365(9463), 923–924.

    Article  PubMed  Google Scholar 

  • Semmler, M., Seitz, J., Erbe, F., Mayer, P., Heyder, J., Oberdörster, G., & Kreyling, W. G. (2004). Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhalation Toxicology, 16(6–7), 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Shukla, A., Gulumian, M., Hei, T. K., Kamp, D., Rahman, Q., & Mossman, B. T. (2003). Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radical Biology & Medicine, 34(9), 1117–1129.

    Article  CAS  Google Scholar 

  • Shvedova, A., Kisin, E., Keshava, N., Murray, A. R., Gorelik, O., Arepalli, S., Gandelsman, V. Z., & Castranova, V. (2004a). Cytotoxic and genotoxic effects of single wall carbon nanotube exposure on human keratinocytes and bronchial epithelial cells [Abstract]. 227th American Chemical Society National Meeting, 27 March-1 April 2004, Anaheim, CA, American Chemical Society, IEC 20, Washington, DC.

    Google Scholar 

  • Shvedova, A., Kisin, E., Murray, A., Schwegler-Berry, D., Gandelsman, V., Baron, P., Maynard, A., Gunter, M., & Castranova, V. (2004b). Exposure of human bronchial cells to carbon nanotubes caused oxidative stress and cytotoxicity. Proceedings of the Meeting of the SFRR Europe 2004, Ioannina, Greece,: Taylor & Francis, Philadelphia, pp. 91–103.

    Google Scholar 

  • Tinkle, S. S., Antonini, J. M., Rich, B. A., Roberts, J. R., Salmen, R., & DePree, K. (2003). Skin as a route of exposure and sensitization in chronic beryllium disease. Environmental Health Perspectives, 111(9), 1202–1208.

    PubMed  CAS  Google Scholar 

  • Warheit, D. B., & Hartsky, M. A. (1993). Role of alveolar macrophage chemotaxis and phagocytosis in pulmonary clearance responses to inhaled particles: Comparisons among rodent species. Microscopy Research and Technique, 26(5), 412–422.

    Article  PubMed  CAS  Google Scholar 

  • Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A. M., & Webb, T. R. (2004). Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicological Sciences: An Official Journal of the Society of Toxicology, 77(1), 117–125.

    CAS  Google Scholar 

  • Yamawaki, H., & Iwai, N. (2006). Cytotoxicity of water-soluble fullerene in vascular endothelial cells. American Journal of Physiology. Cell Physiology, 290(6), C1495–502.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2), 122–132.

    Article  PubMed  CAS  Google Scholar 

  • Zeren, E. H., Gumurdulu, D., Roggli, V. L., Zorludemir, S., Erkisi, M., & Tuncer, I. (2000). Environmental Malignant Mesothelioma in Southern Anatolia: A study of fifty cases. Environmental Health Perspectives, 108(11), 1047–1050.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamar Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Rahman, Q. (2008). Technological Challenges: Asbestos Past Experiences, Nanoparticles Future Developments. In: Molfino, F., Zucco, F. (eds) Women in Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8611-3_13

Download citation

Publish with us

Policies and ethics