Advertisement

Sol-Gel Synthesis of Nanostructured TiO2 Films for Water Purification

  • Yongjun Chen
  • Dionysios D. Dionysiou
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Sol gel method is an important technology for the synthesis of TiO2 films for water treatment. In this chapter, we will discuss the critical issues on the sol gel synthesis of TiO2 films with high photocatalytic activity and good long-term mechanical stability. The aspects will mainly include the following: (1) design of film structure for increasing the number of electron-hole pairs generated and number of hydroxyl radicals produced, (2) tailor-design of the film pore structure for increasing adsorption of treated contaminants and enhancing mass transfer between the contaminants and catalyst active sites, and (3) improvements in the long-term mechanical stability of the TiO2 films by achieving good adhesion of immobilized TiO2 films on the support (substrate). Important achievements of our research works related to sol gel synthesis of TiO2 films and membranes and the application of these TiO2 photocatalysts in promising photocatalytic reactors are summarized. Current challenges and future directions on the sol gel synthesis of TiO2 films for water purification are also discussed.

Keywords

Sol-gel method titanium dioxide photocatalysis immobilized TiO2 films water purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. -G. Julián, F. -I. Pilar and M. -R. Sixto. J. Solar Energy Eng., 129, 4 (2007).CrossRefGoogle Scholar
  2. 2.
    M. Langlet, S. Permpoon, D. Riassetto, G. Berthomé, E. Pernot and J. C. Joud. J. Photochem. Photobiol. A: Chem., 181, 203 (2006).CrossRefGoogle Scholar
  3. 3.
    M. H. Habibi and M. N. Esfahani. Dyes Pigments, 75, 714 (2007).CrossRefGoogle Scholar
  4. 4.
    H. Choi, E. Stathatos and D. D. Dionysiou. Appl. Catal. B: Environ., 63, 60 (2006).CrossRefGoogle Scholar
  5. 5.
    Y. J. Chen and D. D. Dionysiou. Appl. Catal. B: Environ., 69, 24 (2006).CrossRefGoogle Scholar
  6. 6.
    G. Balasubramanian, D. D. Dionysiou, M. T. Suidan, I. Baudin and J.-M. Laîné. Appl. Catal. B: Environ., 47, 73 (2004).CrossRefGoogle Scholar
  7. 7.
    Y. J. Chen and D. D. Dionysiou. J. Mol. Catal. A: Chem., 244, 73 (2006).CrossRefGoogle Scholar
  8. 8.
    Y. J. Chen and D. D. Dionysiou. Appl. Catal. A: General, 317, 129 (2007).CrossRefGoogle Scholar
  9. 9.
    Y. J. Chen and D. D. Dionysiou. Appl. Catal. B: Environ., 62, 255 (2006).CrossRefGoogle Scholar
  10. 10.
    M. G. Antoniou, U. Nambiar and D. D. Dionysiou. Catal. Today, 30, 215 (2007).CrossRefGoogle Scholar
  11. 11.
    J. C. Yu, J. G. Yu and J. C. Zhao. Appl. Catal. B: Environ., 36, 31 (2002).CrossRefGoogle Scholar
  12. 12.
    M. -K. Yeo and M. Kang. Water Res., 40, 1906 (2006).CrossRefGoogle Scholar
  13. 13.
  14. 14.
    J. F. Davis. Wat. Environ. Res., 71, 1070 (1999).CrossRefGoogle Scholar
  15. 15.
    U.S. EPA, Office of Ground Water and Drinking Water, MTBE in Drinking Water. http://www.epa.gov/safewater/mtbe.html (March 2001).
  16. 16.
    AWWA. Water Quality and Treatment, A Handbook of Community Water Supplies, 5th Edition, McGraw-Hill, New York.Google Scholar
  17. 17.
    D. Lince, L. R. Wilson and G. A. Carlson. Bull Environ. Contamin. Toxicol., 61, 484 (1998).CrossRefGoogle Scholar
  18. 18.
    U.S. EPA, Office of Ground Water and Drinking Water, MTBE in Drinking Water. http://www.epa.gov/safewater/mtbe.html (March 2001).
  19. 19.
    M. Berg, H. C. Tran, T. C. Nguyen, H. V. Pham, R. Schertenleib and W. Giger. Environ. Sci. Technol., 35, 2621 (2001).CrossRefGoogle Scholar
  20. 20.
    R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, Ravenscroft and M. Rahman. Nature, 365, 338 (1998).CrossRefGoogle Scholar
  21. 21.
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).CrossRefGoogle Scholar
  22. 22.
    A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev., 95, 735 (1995).CrossRefGoogle Scholar
  23. 23.
    D. F. Ollis, E. Pelizzetti and N. Serpone, Environ. Sci. Technol., 25, 1522 (1991).CrossRefGoogle Scholar
  24. 24.
    A. Fujishima and K. Honda, Nature, 238, 37 (1972).CrossRefGoogle Scholar
  25. 25.
    R. Molinari, M. Mungari, E. Drioli, A. Di, V. Loddo, L. Palmisano and M. Schiavello. Catal. Today, 55, 71 (2000).CrossRefGoogle Scholar
  26. 26.
    C. Wei, W. -Y. Lin, Z. Zainal, N. E Williams, K. Zhu, A. Kruzic, R. L. Smith and K. Rajeshwar. Environ. Sci. Technol., 28, 934 (1994).CrossRefGoogle Scholar
  27. 27.
    A. Fujishima, K. Hashimoto and T. Watanabe. TiO2 Photocatalysis—Fundamentals and Applications, BKC, Tokyo, Japan (1999).Google Scholar
  28. 28.
    M. Bideau, B. Claudel, C. Dubien, L. Faure and H. Kazouan. J. Photochem. Photobiol. A: Chem., 91, 137 (1995).CrossRefGoogle Scholar
  29. 29.
    V. G. Kessler, G. I. Spijksma, G. A. Seisenbaeva, S. Håkansson, D. H. A. Blank and H. J. M. Bouwmeester. J. Sol-Gel Sci. Tech., 40, 163 (2006).CrossRefGoogle Scholar
  30. 30.
    G. J. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin. Chem. Rev., 102, 4093 (2002).CrossRefGoogle Scholar
  31. 31.
    I. Parkin and R. G. Palgrave. J. Mater. Chem., 15, 1689 (2005).CrossRefGoogle Scholar
  32. 32.
    X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou and X. Z. Fu. Langmuir, 21, 2552 (2005).CrossRefGoogle Scholar
  33. 33.
    M. Keshmiri, M. Mohseni and T. Troczynski. Appl. Catal. B: Environ., 53, 209 (2004).CrossRefGoogle Scholar
  34. 34.
    B. Guo, Z. l. Liu, L. Hong and H. X. Jiang. Surf. Coat. Technol., 198, 24 (2005).CrossRefGoogle Scholar
  35. 35.
    K. H. Qi, W. A. Daoud, J. H. Xin, C. L. Mak, W. Tang and W. Cheung. J. Mater. Chem., 16, 4567 (2006).CrossRefGoogle Scholar
  36. 36.
    M. C. Fuertes and G. J. A. A. Soler-Illia. Chem. Mater., 18, 2109 (2006).CrossRefGoogle Scholar
  37. 37.
    Y. J. Chen, E. Stathatos and D. D. Dionysiou. Surf. and Coatings Technol. 2008 (in press). Corrected Proof. Available online 30 August 2007.Google Scholar
  38. 38.
    H. Choi, M. G. Antoniou, A. A. de la Cruz, E. Stathatos and D. D. Dionysiou. Desalination, 207, 395 (2007).CrossRefGoogle Scholar
  39. 39.
    H. Choi, A. C. Sofranko and D. D. Dionysiou. Adv. Func. Mater., 16, 1067 (2006).CrossRefGoogle Scholar
  40. 40.
    Y. J. Chen and D. D. Dionysiou. Appl. Catal. B: Environ. 2008(in press). Accepted manu- script. Available online 22 November 2007.Google Scholar
  41. 41.
    G. Balasubramanian, D. D. Dionysiou, M. T. Suidan, V. Subramanian, I. Baudin and J. -M. Laîné. J. Mat. Sci., 38, 823 (2003).CrossRefGoogle Scholar
  42. 42.
    D. G. Shchukin and D. V. Sviridov. J. Photochem. Photobiol. C: Photochem. Rev., 7, 23 (2006).CrossRefGoogle Scholar
  43. 43.
    A. Fujishima, X. T. Zhang and D. A. Tryk. Intern. J. Hydrogen Energy, 32, 2664 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations