Skip to main content

Some Aspects of Wetting at High Temperature

  • Conference paper
Materials Issues for Generation IV Systems

This chapter presents a comprehensive overview of wetting phenomena which take place at high temperatures. It relies in part on the chapter “Introduction to interfaces and diffusion”, elsewhere in this volume, as a foundation. The topics addressed include: definitions of intrinsic wetting and associated quantities, wetting anomalies due to diffusion and anisotropy of solid/fluid interfaces, wetting hysteresis on real surfaces, and orders of magnitude of the energies that determine wetting in metal/metal, metal/ceramic and glass systems. At the end of this chapter some examples of evolving contact between liquid and solid metal illustrate the complexity of wetting phenomena at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brakke K.A., 2003, The Surface Evolver, http://www.susqu.edu/facstaff/b/brakke/evolver.

  • Chatain D. and Carter W.C., 2004, Wetting dynamics: Spreading of metallic drops, Nature Mater. 13: 843-845.

    Article  ADS  CAS  Google Scholar 

  • Chatain D. and Galy D., 2006, Epitaxy of Pb crystal on Cu, J. Mater. Sci. 41: 7769-7774.

    Article  CAS  ADS  Google Scholar 

  • Chatain D., Ghetta, V. and Wynblatt P., 2004, Equilibrium shape of copper crystals grown on sapphire, Interface Sci. 12:7-18.

    Article  CAS  Google Scholar 

  • Chatain D., Wynblatt P., and Rohrer G.S., 2005, Equilibrium crystal shape of Bi-saturated Cu crystals at 1223 K, Acta Mater. 53:4057-4064.

    Article  CAS  Google Scholar 

  • Chatain D., Lewis D., Baland J.P., and Carter W.C., 2006, Numerical analysis of the shapes and energies of droplets on micropatterned substrates, Langmuir 22: 4237-4243.

    Article  CAS  PubMed  Google Scholar 

  • De Gennes P.G., 1985, Wetting: statics and dynamics, Rev. Mod. Phys. 57: 827-863.

    Article  CAS  ADS  Google Scholar 

  • De Jonghe V. and Chatain D., 1995, Experimental study of the wetting hysteresis on surfaces with controlled geometrical and/or chemical defects, Acta Metall. et Mater. 43: 1505-1510.

    Article  CAS  Google Scholar 

  • Eick J.D., Good R.J., and Neumann A.W., 1975, Thermodynamics of Contact Angles. II. Rough Solid Surfaces, J. Colloid Interf. Sci. 53: 235-248.

    Article  Google Scholar 

  • Ford, S.P., 1983, Stress corrosion cracking of iron-based alloys in auqeous environment, In: Treatrise on materials science and technology, C.L. Briant and S.K. Banerji, Academic Press, New-York, 25 pp. 235-274.

    Google Scholar 

  • Ghetta V. and Chatain D., 2002, Morphologies adopted by Al2O3 single-crystal surfaces in contact with Cu sessile droplets, J. Am. Ceram. Soc. 85: 961-964.

    Article  CAS  Google Scholar 

  • Geysermans P., Elyeznasni N., and Russier V., 2005, Layered interfaces between immiscible liquids studied by densty-functional theory and molecular dynamics simumations, J. Chem. Phys. 123: 204711-204718.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Herring C., 1951, Some theorems on the free energy of crystal surfaces, Phys. Rev. 82: 87-93.

    Article  MATH  CAS  ADS  Google Scholar 

  • Heyraud J.C., and Metois J.J., 1983, Equilibrium shape and temperature: Lead on graphite, Surf. Sci. 128:334-342.

    Article  CAS  ADS  Google Scholar 

  • Hirth J.P., 1973, Thermodynamics of surfaces, in: Structure and Properties of Metal Surfaces, Honda Memorial Series in Materials Science No. 1, Maruzen Co. Ltd., Tokyo, pp. 10-33.

    Google Scholar 

  • Johnson R.E. and Dettré R.H., 1964, Contact angle hysteresis, I: study of an idealized surface, Adv. Chem. Sci. 43: 112-135.

    Article  CAS  Google Scholar 

  • Kaplan W.D. and Kaufmann Y., 2006, Structural order in liquids induced by interfaces with crystals, Annu. Rev. Mater. Res. 36:1-48.

    Article  CAS  Google Scholar 

  • Keene B.J., 1993. Review of data for the surface tension of pure metals, Int. Mater. Rev. 38:157-192.

    CAS  Google Scholar 

  • Kitayama M. and Glaeser A.M., 2002, The Wulff shape of alumina: III, undoped alumina, J. Am. Ceram. Soc. 85: 611-622

    Article  CAS  Google Scholar 

  • Kumikov V.K. and Khokonov K.B., 1983, On the measurement of surface free-energy and surface-tension of solid metals. J. Appl. Phys., 54: 1346-1350.

    Article  CAS  ADS  Google Scholar 

  • Mills K.C. and Su Y.C., 2006, Review of surface tension data for metallic elements and alloys: Part 1 - Pure metals, Int. Mater. Rev. 51: 329-351.

    Article  CAS  ADS  Google Scholar 

  • Levi G. and Kaplan W.D., 2003, Aluminium-alumina interface morphology and thermodynamics from dewetting experiments, Acta Mater. 51: 2793-2802.

    CAS  Google Scholar 

  • Marmur A., 2004, The lotus effect: superhydrophobicity and metastability, Langmuir 20: 3517-3519.

    Article  CAS  PubMed  Google Scholar 

  • Mullins W.W., 1963, Solid surface morphologies governed by capillarity, In: Metal Surfaces: Structure, energetics and kinetics, W.D. Robertson and N.A. Gjostein, eds., ASM, Cleveland, p. 17-66.

    Google Scholar 

  • Saiz E., Cannon R.M., and Tomsia A.P., 1999, Energetics and atomic transport at liquid metal/Al2O3 interfaces, Acta Mater. 47: 4209-4220.

    Article  CAS  Google Scholar 

  • Saiz E., Cannon R.M., and Tomsia A.P., 2000, Reactive spreading, adsorption, ridging and compound formation, Acta Mater. 48: 4449-4462.

    Article  CAS  Google Scholar 

  • Vinet B., Magnusson L., Fredriksson H., and Desré P.J., 2002, Correlations between surface and interface energies with respect to crystal nucleation, J. Colloid Interf. Sci. 255: 363-374.

    Article  CAS  Google Scholar 

  • Wynblatt P. and Chatain D., 2006, Anisotropy of Segregation at grain boundaries and surfaces, Metall. Mater. Trans. 37A:2595-2620.

    Article  CAS  Google Scholar 

  • Wynblatt P. and Shi Z., 2005, Relation between grain boundary segregation and grain boundary character in fcc alloys, J. Mater. Sci. 40:2765-2773.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Chatain, D., Ghetta, V. (2008). Some Aspects of Wetting at High Temperature. In: Ghetta, V., Gorse, D., Mazière, D., Pontikis, V. (eds) Materials Issues for Generation IV Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8422-5_21

Download citation

Publish with us

Policies and ethics