Molecular Chaperones and Protection in Animal and Cellular Models of Ischemic Stroke

  • Yi-Bing Ouyang
  • Lijun Xu
  • Rona G. Giffard
Part of the Heat Shock Proteins book series (HESP, volume 3)


Chaperones, including heat-shock proteins (Hsps) Hsp70, Hsp40 and GroEL, has been shown to protect from both global and focal ischemia in vivo and cell culture models of ischemia/reperfusion injury in vitro. While the mechanism of protection in part reflects chaperone functions (i.e., preventing abnormal protein folding or aggregation), work from our laboratory and others has implicated additional mechanisms including direct interference with cell death pathways, modulation of inflammation, and preservation of mitochondrial function. In this chapter we will first briefly introduce the Hsps, then describe the animal and cellular models of cerebral ischemia in which effects of Hsps have been studied, including reviewing methods used to overexpress Hsps. We will focus on the protective effect of overexpressing different Hsps against ischemic stroke and elaborate the potential mechanisms involved. Despite a great deal of study, much remains to be learned about the multifaceted effects of Hsps in cerebral ischemia. The endogenous stress response remains a model of cell protection with promise for the development of novel therapies for ischemic brain injury


Apoptosis cell culture cerebral ischemia inflammation heat shock proteins neuroprotection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali A, Bharadwaj S, O’Carroll R, Ovsenek N. 1998. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18: 4949–4960.PubMedGoogle Scholar
  2. Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. 1998. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21: 516–520.PubMedCrossRefGoogle Scholar
  3. Amin V, Cumming DV, Latchman DS. 1996. Over-expression of heat shock protein 70 protects neuronal cells against both thermal and ischaemic stress but with different efficiencies. Neurosci Lett 206: 45–48.PubMedCrossRefGoogle Scholar
  4. Badin RA, Lythgoe MF, van der Weerd L, Thomas DL, Gadian DG, Latchman DS. 2006. Neuroprotective effects of virally delivered HSPs in experimental stroke. J Cereb Blood Flow Metab 26: 371–381.PubMedCrossRefGoogle Scholar
  5. Barnes PJ, Karin M. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071.PubMedCrossRefGoogle Scholar
  6. Beere HM, Green DR. 2001. Stress management – heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11: 6–10.PubMedCrossRefGoogle Scholar
  7. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. 2000. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469–475.PubMedCrossRefGoogle Scholar
  8. Beissinger M, Buchner J. 1998. How chaperones fold proteins. Biol Chem 379: 245–259.PubMedGoogle Scholar
  9. Bence NF, Sampat RM, Kopito RR. 2001. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–1555.PubMedCrossRefGoogle Scholar
  10. Bhagat L, Singh VP, Hietaranta AJ, Agrawal S, Steer ML, Saluja AK. 2000. Heat shock protein 70 prevents secretagogue-induced cell injury in the pancreas by preventing intracellular trypsinogen activation. J Clin Invest 106: 81–89.PubMedCrossRefGoogle Scholar
  11. Bondarenko A, Chesler M. 2001. Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34: 134–142.PubMedCrossRefGoogle Scholar
  12. Bonini NM. 2002. Chaperoning brain degeneration. Proc Natl Acad Sci USA 99 Suppl 4: 16407–16411.CrossRefGoogle Scholar
  13. Clemons NJ, Anderson RL. 2006. TRAIL-induced apoptosis is enhanced by heat shock protein 70 expression. Cell Stress Chaperones 11: 343–355.PubMedCrossRefGoogle Scholar
  14. Cohen FE. 1999. Protein misfolding and prion diseases. J Mol Biol 293: 313–320.PubMedCrossRefGoogle Scholar
  15. Creagh EM, Cotter TG. 1999. Selective protection by hsp 70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis. Immunology 97: 36–44.PubMedCrossRefGoogle Scholar
  16. DeGracia DJ, Hu BR. 2007. Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab 27: 875–893.PubMedGoogle Scholar
  17. Dichter MA. 1978. Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res 149: 279–293.PubMedCrossRefGoogle Scholar
  18. Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL. 2001. Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16: 210–219.PubMedCrossRefGoogle Scholar
  19. Dugan LL, Bruno VM, Amagasu SM, Giffard RG. 1995. Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity. J Neurosci 15: 4545–4555.PubMedGoogle Scholar
  20. Erbse A, Mayer MP, Bukau B. 2004. Mechanism of substrate recognition by Hsp70 chaperones. Biochem Soc Trans 32: 617–621.PubMedCrossRefGoogle Scholar
  21. Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ. 1996. Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 271: 17724–17732.PubMedCrossRefGoogle Scholar
  22. Feinstein DL, Galea E, Reis DJ. 1997. Suppression of glial nitric oxide synthase induction by heat shock: effects on proteolytic degradation of IkappaB-alpha. Nitric Oxide 1: 167–176.PubMedCrossRefGoogle Scholar
  23. Fink SL, Chang LK, Ho DY, Sapolsky RM. 1997. Defective herpes simplex virus vectors expressing the rat brain stress- inducible heat shock protein 72 protect cultured neurons from severe heat shock. J Neurochem 68: 961–969.PubMedCrossRefGoogle Scholar
  24. Freeman BC, Myers MP, Schumacher R, Morimoto RI. 1995. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14: 2281–2292.PubMedGoogle Scholar
  25. Frydman J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70: 603–647.PubMedCrossRefGoogle Scholar
  26. Frydman J, Hartl FU. 1996. Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272: 1497–1502.PubMedCrossRefGoogle Scholar
  27. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY. 1997. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272: 18033–18037.PubMedCrossRefGoogle Scholar
  28. Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY. 1998. Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438: 1–4.PubMedCrossRefGoogle Scholar
  29. Gebauer M, Zeiner M, Gehring U. 1997. Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett 417: 109–113.PubMedCrossRefGoogle Scholar
  30. Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B, Yenari MA. 2004. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol 207: 3213–3220.PubMedCrossRefGoogle Scholar
  31. Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B. 2001. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914: 66–73.PubMedCrossRefGoogle Scholar
  32. Guzhova IV, Darieva ZA, Melo AR, Margulis BA. 1997. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2: 132–139.PubMedCrossRefGoogle Scholar
  33. Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571–579.PubMedCrossRefGoogle Scholar
  34. Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H. 2002. Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation 106: 2601–2607.PubMedCrossRefGoogle Scholar
  35. Heal RD, McGivan JD. 1997. Induction of the stress protein Grp75 by amino acid deprivation in CHO cells does not involve an increase in Grp75 mRNA levels. Biochim Biophys Acta 1357: 31–40.PubMedCrossRefGoogle Scholar
  36. Hecker JG, Hall LL, Irion VR. 2001. Nonviral gene delivery to the lateral ventricles in rat brain: initial evidence for widespread distribution and expression in the central nervous system. Mol Ther 3: 375–384.PubMedCrossRefGoogle Scholar
  37. Heneka MT, Sharp A, Klockgether T, Gavrilyuk V, Feinstein DL. 2000. The heat shock response inhibits NF-kappaB activation, nitric oxide synthase type 2 expression, and macrophage/microglial activation in brain. J Cereb Blood Flow Metab 20: 800–811.PubMedCrossRefGoogle Scholar
  38. Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu Rev Biochem 67: 425–479.PubMedCrossRefGoogle Scholar
  39. Hu BR, Martone ME, Jones YZ, Liu CL. 2000. Protein aggregation after transient cerebral ischemia. J Neurosci 20: 3191–3199.PubMedGoogle Scholar
  40. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, Siesjo BK, Liu CL. 2001. Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab 21: 865–875.PubMedCrossRefGoogle Scholar
  41. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. 1998. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17: 6124–6134.PubMedCrossRefGoogle Scholar
  42. Jana NR, Tanaka M, Wang G, Nukina N. 2000. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9: 2009–2018.PubMedCrossRefGoogle Scholar
  43. Kakizuka A. 1998. Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet 14: 396–402.PubMedCrossRefGoogle Scholar
  44. Kaul SC, Deocaris CC, Wadhwa R. 2007. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42: 263–274.PubMedCrossRefGoogle Scholar
  45. Kelly S, Uney JB, McCulloch J. 2001a. Adenovirus HSP70 gene transfer ameliorates damage following global ischemia. J. Cereb Blood Flow Metab 21: S23.Google Scholar
  46. Kelly S, Bieneman A, Horsburgh K, Hughes D, Sofroniew MV, McCulloch J, Uney JB. 2001b. Targeting expression of hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J Cereb Blood Flow Metab 21: 972–981.CrossRefGoogle Scholar
  47. Kelly S, Bieneman A, Horsburgh K, Hughes D, Sofroniew MV, McCulloch J, Uney JB. 2001c. Targeting expression of hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J Cereb Blood Flow Metab 21: 972–981.CrossRefGoogle Scholar
  48. Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA, Steinberg GK. 2002. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 52: 160–167.PubMedCrossRefGoogle Scholar
  49. Klosterhalfen B, Tons C, Hauptmann S, Tietze L, Offner FA, Kupper W, Kirkpatrick CJ. 1996. Influence of heat shock protein 70 and metallothionein induction by zinc-bis-(DL-hydrogenaspartate) on the release of inflammatory mediators in a porcine model of recurrent endotoxemia. Biochem Pharmacol 52: 1201–1210.PubMedCrossRefGoogle Scholar
  50. Koh JY, Choi DW. 1987. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20: 83–90.PubMedCrossRefGoogle Scholar
  51. Langley SM, Chai PJ, Miller SE, Mault JR, Jaggers JJ, Tsui SS, Lodge AJ, Lefurgey A, Ungerleider RM. 1999. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Ann Thorac Surg 68: 4–12; discussion 12–13.PubMedCrossRefGoogle Scholar
  52. Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG. 2001a. Differential neuroprotection from human heat shock protein 70 overexpression in vitro and in vivo models of ischemia and ischemia- like conditions. Exp Neurol 170: 129–139.CrossRefGoogle Scholar
  53. Lee SH, Kim M, Yoon BW, Kim YJ, Ma SJ, Roh JK, Lee JS, Seo JS. 2001b. Targeted hsp70.1 disruption increases infarction volume after focal cerebral ischemia in mice. Stroke 32: 2905–2912.CrossRefGoogle Scholar
  54. Lee JE, Kim YJ, Kim JY, Lee WT, Yenari MA, Giffard RG. 2004. The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes. Neuroreport 15: 499–502.PubMedCrossRefGoogle Scholar
  55. Li GC, Li L, Liu RY, Rehman M, Lee WM. 1992. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc Natl Acad Sci USA 89: 2036–2040.PubMedCrossRefGoogle Scholar
  56. Lin Z, Rye HS. 2006. GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41: 211–239.PubMedCrossRefGoogle Scholar
  57. Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR. 2002. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81: 355–364.PubMedCrossRefGoogle Scholar
  58. Manning-Krieg UC, Scherer PE, Schatz G. 1991. Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J 10: 3273–3280.PubMedGoogle Scholar
  59. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95: 1446–1456.PubMedCrossRefGoogle Scholar
  60. Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR. 1995. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res 40: 807–819.PubMedCrossRefGoogle Scholar
  61. Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J. 2005. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25: 899–910.PubMedCrossRefGoogle Scholar
  62. Meng X, Harken AH. 2002. The interaction between Hsp70 and TNF-alpha expression: a novel mechanism for protection of the myocardium against post-injury depression. Shock 17: 345–353.PubMedCrossRefGoogle Scholar
  63. Miller DG, Adam MA, Miller AD. 1990. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10: 4239–4242.PubMedGoogle Scholar
  64. Minami Y, Hohfeld J, Ohtsuka K, Hartl FU. 1996. Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J Biol Chem 271: 19617–19624.PubMedCrossRefGoogle Scholar
  65. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. 1997. Role of the human heat shock protein hsp70 in protection against stress- induced apoptosis. Mol Cell Biol 17: 5317–5327.PubMedGoogle Scholar
  66. Nowak TS, Jr. 1990. Protein synthesis and the heart shock/stress response after ischemia. Cerebrovasc Brain Metab Rev 2: 345–366.PubMedGoogle Scholar
  67. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M. 2000. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor- specific death program that is independent of caspases and bypasses Bcl- 2. Proc Natl Acad Sci USA 97: 7871–7876.PubMedCrossRefGoogle Scholar
  68. O’Brien MC, Flaherty KM, McKay DB. 1996. Lysine 71 of the chaperone protein Hsc70 is essential for ATP hydrolysis. J Biol Chem 271: 15874–15878.PubMedCrossRefGoogle Scholar
  69. Ohno M, Kitabatake N, Tani F. 2004. Role of the C-terminal region of mouse inducible Hsp72 in the recognition of peptide substrate for chaperone activity. FEBS Lett 576: 381–386.PubMedCrossRefGoogle Scholar
  70. Ohtsuka K, Hata M. 2000. Molecular chaperone function of mammalian Hsp70 and Hsp40 – a review. Int J Hyperthermia 16: 231–245.PubMedCrossRefGoogle Scholar
  71. Ouyang YB, Hu BR. 2001. Protein ubiquitination in rat brain following hypoglycemic coma. Neurosci Lett 298: 159–162.PubMedCrossRefGoogle Scholar
  72. Ouyang YB, Xu L, Giffard RG. 2005. Geldanamycin treatment reduces delayed CA1 damage in mouse hippocampal organotypic cultures subjected to oxygen glucose deprivation. Neurosci Lett 380: 229–233.PubMedCrossRefGoogle Scholar
  73. Ouyang YB, Xu LJ, Sun YJ, Giffard RG. 2006. Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress. Cell Stress Chaperones 11: 180–186.PubMedCrossRefGoogle Scholar
  74. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG. 2007. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27: 4253–4260.PubMedCrossRefGoogle Scholar
  75. Papadopoulos MC, Sun XY, Cao J, Mivechi NF, Giffard RG. 1996. Over-expression of HSP-70 protects astrocytes from combined oxygen–glucose deprivation. Neuroreport 7: 429–432.PubMedCrossRefGoogle Scholar
  76. Papadopoulos MC, Koumenis IL, Xu L, Giffard RG. 1998. Potentiation of murine astrocyte antioxidant defence by bcl-2: protection in part reflects elevated glutathione levels. Eur J Neurosci 10: 1252–1260.PubMedCrossRefGoogle Scholar
  77. Planas AM, Soriano MA, Estrada A, Sanz O, Martin F, Ferrer I. 1997. The heat shock stress response after brain lesions: induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Prog Neurobiol 51: 607–636.PubMedCrossRefGoogle Scholar
  78. Plumier JC, Krueger AM, Currie RW, Kontoyiannis D, Kollias G, Pagoulatos GN. 1997. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 2: 162–167.PubMedCrossRefGoogle Scholar
  79. Polla BS, Stubbe H, Kantengwa S, Maridonneau-Parini I, Jacquier-Sarlin MR. 1995. Differential induction of stress proteins and functional effects of heat shock in human phagocytes. Inflammation 19: 363–378.PubMedCrossRefGoogle Scholar
  80. Qiao Y, Ouyang YB, Giffard RG. 2003. Overexpression of HDJ-2 protects astrocytes from ischemia-like injury and reduces redistribution of ubiquitin staining in vitro. J Cereb Blood Flow Metab 23: 1113–1116.PubMedCrossRefGoogle Scholar
  81. Radford NB, et al. 1996. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci USA 93: 2339–2342.PubMedCrossRefGoogle Scholar
  82. Rajapandi T, Wu C, Eisenberg E, Greene L. 1998. Characterization of D10S and K71E mutants of human cytosolic hsp70. Biochemistry 37: 7244–7250.PubMedCrossRefGoogle Scholar
  83. Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR. 2000. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 47: 782–791.PubMedCrossRefGoogle Scholar
  84. Ran R, et al. 2004. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18: 1466–1481.PubMedCrossRefGoogle Scholar
  85. Ravagnan L, et al. 2001. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3: 839–843.PubMedCrossRefGoogle Scholar
  86. Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T. 2003. Mouse hippocampal organotypic tissue cultures exposed to in vitro “ischemia” show selective and delayed CA1 damage that is aggravated by glucose. J Cereb Blood Flow Metab 23: 23–33.PubMedCrossRefGoogle Scholar
  87. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. 2000. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2: 476–483.PubMedCrossRefGoogle Scholar
  88. Sato K, Saito H, Matsuki N. 1996. HSP70 is essential to the neuroprotective effect of heat-shock. Brain Res 740: 117–123.PubMedCrossRefGoogle Scholar
  89. Schroeder S, Bischoff J, Lehmann LE, Hering R, von Spiegel T, Putensen C, Hoeft A, Stuber F. 1999. Endotoxin inhibits heat shock protein 70 (HSP70) expression in peripheral blood mononuclear cells of patients with severe sepsis. Intensive Care Med 25: 52–57.PubMedCrossRefGoogle Scholar
  90. Scott MD, Frydman J. 2003. Aberrant protein folding as the molecular basis of cancer. Methods Mol Biol 232: 67–76.PubMedGoogle Scholar
  91. Sharp FR, Lowenstein D, Simon R, Hisanaga K. 1991. Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction. J Cereb Blood Flow Metab 11: 621–627.PubMedGoogle Scholar
  92. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE. 2001. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10: 1307–1315.PubMedCrossRefGoogle Scholar
  93. Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjo BK. 1984. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 69: 385–401.PubMedCrossRefGoogle Scholar
  94. Soriano MA, Planas AM, Rodriguez-Farre E, Ferrer I. 1994. Early 72-kDa heat shock protein induction in microglial cells following focal ischemia in the rat brain. Neurosci Lett 182: 205–207.PubMedCrossRefGoogle Scholar
  95. States BA, Honkaniemi J, Weinstein PR, Sharp FR. 1996. DNA fragmentation and HSP70 protein induction in hippocampus and cortex occurs in separate neurons following permanent middle cerebral artery occlusions. J Cereb Blood Flow Metab 16: 1165–1175.PubMedCrossRefGoogle Scholar
  96. Steel R, Doherty JP, Buzzard K, Clemons N, Hawkins CJ, Anderson RL. 2004. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279: 51490–51499.PubMedCrossRefGoogle Scholar
  97. Stenoien DL, Cummings CJ, Adams HP, Mancini MG, Patel K, DeMartino GN, Marcelli M, Weigel NL, Mancini MA. 1999. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8: 731–741.PubMedCrossRefGoogle Scholar
  98. Stoppini L, Buchs PA, Muller D. 1991. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37: 173–182.PubMedCrossRefGoogle Scholar
  99. Sun Y, Ouyang YB, Xu L, Chow AM, Anderson R, Hecker JG, Giffard RG. 2006. The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab 26: 937–950.PubMedCrossRefGoogle Scholar
  100. Susin SA, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446.PubMedCrossRefGoogle Scholar
  101. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. 1990. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10: 290–293.PubMedGoogle Scholar
  102. Tang Y, Ramakrishnan C, Thomas J, DeFranco DB. 1997. A role for HDJ-2/HSDJ in correcting subnuclear trafficking, transactivation, and transrepression defects of a glucocorticoid receptor zinc finger mutant. Mol Biol Cell 8: 795–809.PubMedGoogle Scholar
  103. Taylor JP, Hardy J, Fischbeck KH. 2002. Toxic proteins in neurodegenerative disease. Science 296: 1991–1995.PubMedCrossRefGoogle Scholar
  104. Thulasiraman V, Yang CF, Frydman J. 1999. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18: 85–95.PubMedCrossRefGoogle Scholar
  105. Tsuchiya D, Hong S, Matsumori Y, Shiina H, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR. 2003. Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome C release and subsequent DNA fragmentation after permanent focal ischemia. J Cereb Blood Flow Metab 23: 718–727.PubMedCrossRefGoogle Scholar
  106. Uney JB, Kew JN, Staley K, Tyers P, Sofroniew MV. 1993. Transfection-mediated expression of human Hsp70i protects rat dorsal root ganglian neurones and glia from severe heat stress. FEBS Lett 334: 313–316.PubMedCrossRefGoogle Scholar
  107. van der Weerd L, Lythgoe MF, Badin RA, Valentim LM, Akbar MT, de Belleroche JS, Latchman DS, Gadian DG. 2005. Neuroprotective effects of HSP70 overexpression after cerebral ischaemia – an MRI study. Exp Neurol 195: 257–266.PubMedCrossRefGoogle Scholar
  108. Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C. 2002. HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16: 685–695.PubMedCrossRefGoogle Scholar
  109. Wang TF, Chang JH, Wang C. 1993. Identification of the peptide binding domain of hsc70. 18-Kilodalton fragment located immediately after ATPase domain is sufficient for high affinity binding. J Biol Chem 268: 26049–26051.PubMedGoogle Scholar
  110. Weiss YG, Maloyan A, Tazelaar J, Raj N, Deutschman CS. 2002. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 110: 801–806.PubMedGoogle Scholar
  111. Weissman JS, Kashi Y, Fenton WA, Horwich AL. 1994. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78: 693–702.PubMedCrossRefGoogle Scholar
  112. Xiao N, Callaway CW, Lipinski CA, Hicks SD, DeFranco DB. 1999. Geldanamycin provides posttreatment protection against glutamate- induced oxidative toxicity in a mouse hippocampal cell line. J Neurochem 72: 95–101.PubMedCrossRefGoogle Scholar
  113. Xu L, Giffard RG. 1997. HSP70 protects murine astrocytes from glucose deprivation injury. Neurosci Lett 224: 9–12.PubMedCrossRefGoogle Scholar
  114. Xu L, Lee JE, Giffard RG. 1999. Overexpression of bcl-2, bcl-XL or hsp70 in murine cortical astrocytes reduces injury of co-cultured neurons. Neurosci Lett 277: 193–197.PubMedCrossRefGoogle Scholar
  115. Xu L, Ouyang YB, Giffard RG. 2003. Geldanamycin reduces necrotic and apoptotic injury due to oxygen–glucose deprivation in astrocytes. Neurol Res 25: 697–700.PubMedCrossRefGoogle Scholar
  116. Xu L, Dayal M, Ouyang YB, Sun Y, Yang CF, Frydman J, Giffard RG. 2006. Chaperonin GroEL and its mutant D87K protect from ischemia in vivo and in vitro. Neurobiol Aging 27: 62–569.CrossRefGoogle Scholar
  117. Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY, Sapolsky RM, Steinberg GK. 1998. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy [see comments]. Ann Neurol 44: 584–591.PubMedCrossRefGoogle Scholar
  118. Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK. 1999. The neuroprotective potential of heat shock protein 70 (HSP70). Mol Med Today 5: 525–531.PubMedCrossRefGoogle Scholar
  119. Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG. 2005. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann NY Acad Sci 1053: 74–83.PubMedCrossRefGoogle Scholar
  120. Zambrano G. 2004. Influence of the 70 kD heat shock protein in astrocytes and microglia under injury conditions. J Neurochem 90: 60.Google Scholar
  121. Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. 2004. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab 24: 681–692.PubMedCrossRefGoogle Scholar
  122. Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA. 2007. Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28: 53–63.PubMedCrossRefGoogle Scholar
  123. Zoghbi HY, Orr HT. 2000. Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23: 217–247.PubMedCrossRefGoogle Scholar
  124. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94: 471–480.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Yi-Bing Ouyang
    • 1
  • Lijun Xu
    • 1
  • Rona G. Giffard
    • 1
    • 2
  1. 1.Department of AnesthesiaStanford University School of MedicineStanfordUSA
  2. 2.Department of AnesthesiaStanford University School of MedicineStanfordUSA

Personalised recommendations