Skip to main content

Heat Shock Protein-27 (Hsp-27) in Breast Cancers: Regulation of Expression and Function

  • Chapter
Heat Shock Proteins in Cancer

Part of the book series: Heat Shock Proteins ((HESP,volume 2))

  • 732 Accesses

Abstract

The small heat shock protein, Hsp27, is elevated in a significant proportion of breast cancers. Over-expression of Hsp27 in breast cancer cells increases anchorage-independent growth, invasiveness and resistance to chemotherapeutic drugs and is associated with poor prognosis and shorter disease free survival in a proportion of cancer patients. Hsp27 acts in a complex manner to elicit diverse effects e.g. increasing survival in response to many stresses by acting either as a molecular chaperone, by association with components of the apoptotic machinery and/or by increasing cellular glutathione to regulate the redox state of the cells. Hsp27 also regulates cytoskeleton organization and stability. Therefore, factors that increase the expression and/or alter the functions of Hsp27 in breast cancer cells can affect disease progression and outcome following treatment. Although Hsp27 expression can be mediated via the classical Heat Shock response following stress, its elevation in breast cancer cells is associated with independent positive regulators which include the estrogen receptor (ER) and transcription factors such as Brn-3b and Sp1. HET/SAF-B negatively regulates Hsp27 in these cells. The effects of Hsp27 are also regulated post-translationally by phosphorylation at specific residues, which alter the oligomerization state of the protein and thus its effects in the cells. The expression, effects and mechanisms by which Hsp27 acts in breast cancer cells are described in this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Edwards D P and McGuire W L (1980) Estrogen Regulation of Specific Messinger RNA’s in Human Breast Cancer Cells. Biochem Biophys Res Commun 97: pp 1354–1361.

    Article  PubMed  CAS  Google Scholar 

  • Ahlers A, Belka C, Gaestel M, Lamping N, Sott C, Herrmann F and Brach M A (1994) Interleukin-1-Induced Intracellular Signaling Pathways Converge in the Activation of Mitogen-Activated Protein Kinase and Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 and the Subsequent Phosphorylation of the 27-Kilodalton Heat Shock Protein in Monocytic Cells. Mol Pharmacol 46: pp 1077–1083.

    PubMed  CAS  Google Scholar 

  • Arrigo AP (2001) Hsp27: Novel Regulator of Intracellular Redox State. IUBMB Life 52: pp 303–307.

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Suhan J P and Welch W J (1988) Dynamic Changes in the Structure and Intracellular Locale of the Mammalian Low-Molecular-Weight Heat Shock Protein. Mol Cell Biol 8: pp 5059–5071.

    PubMed  CAS  Google Scholar 

  • Bai J, Sui J, Demirjian A, Vollmer C M, Jr., Marasco W and Callery M P (2005) Predominant Bcl-XL Knockdown Disables Antiapoptotic Mechanisms: Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Based Triple Chemotherapy Overcomes Chemoresistance in Pancreatic Cancer Cells in Vitro. Cancer Res 65: pp 2344–2352.

    Article  PubMed  CAS  Google Scholar 

  • Behrend L, Henderson G and Zwacka R M (2003) Reactive Oxygen Species in Oncogenic Transformation. Biochem Soc Trans 31: pp 1441–1444.

    PubMed  CAS  Google Scholar 

  • Benndorf R, Engel K and Gaestel M (2000) Analysis of Small Hsp Phosphorylation. Methods Mol Biol 99: pp 431-445.

    Google Scholar 

  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J and Lutsch G (1994) Phosphorylation and Supramolecular Organization of Murine Small Heat Shock Protein HSP25 Abolish Its Actin Polymerization-Inhibiting Activity. J Biol Chem 269: pp 20780–20784.

    PubMed  CAS  Google Scholar 

  • Black AR, Black J D and Azizkhan-Clifford J (2001) Sp1 and Kruppel-Like Factor Family of Transcription Factors in Cell Growth Regulation and Cancer. J Cell Physiol 188: pp 143–160.

    Article  PubMed  CAS  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin S A, Diaz-latoud C, Gurbuxani S, Arrigo A P, Kroemer G, Solary E and Garrido C (2000) Hsp27 Negatively Regulates Cell Death by Interacting With Cytochrome C. Nat Cell Biol 2: pp 645–652.

    Article  PubMed  CAS  Google Scholar 

  • Budhram-Mahadeo, VS, Irshad S, Bowen S, Lee, S, Tonini, GP and Latchman DS (2007) Proliferation-associated Brn-3b transcription factor can activate cyclin D1 expression in neuroblastoma and breast cancer cells Oncogene. javascript:AL_get(this, %20’jour, %20’Oncogene.’);(in press)

    Google Scholar 

  • Budhram-Mahadeo V, Ndisang D, Ward T, Weber B L and Latchman D S (1999) The Brn-3b POU Family Transcription Factor Represses Expression of the BRCA-1 Anti-Oncogene in Breast Cancer Cells. Oncogene 18: pp 6684–6691.

    Article  PubMed  CAS  Google Scholar 

  • Budhram-Mahadeo V, Parker M and Latchman D S (1998) POU Transcription Factors Brn-3a and Brn-3b Interact With the Estrogen Receptor and Differentially Regulate Transcriptional Activity Via an Estrogen Response Element. Mol Cell Biol 18: pp 1029–1041.

    PubMed  CAS  Google Scholar 

  • Budhram-Mahadeo VS and Latchman D S (2006) “Targeting Brn-3b in Breast Cancer Therapy” . Expert Opin Ther Targets 10: pp 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Cairns J, Qin S, Philp R, Tan Y H and Guy G R (1994) Dephosphorylation of the Small Heat Shock Protein Hsp27 in Vivo by Protein Phosphatase 2A. J Biol Chem 269: pp 9176–9183.

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Khaleque M A, Sawyer D B and Ciocca D R (2006) Heat Shock Proteins in Cancer: Chaperones of Tumorigenesis. Trends Biochem Sci 31: pp 164–172.

    Article  PubMed  CAS  Google Scholar 

  • Charette SJ and Landry J (2000) The Interaction of HSP27 With Daxx Identifies a Potential Regulatory Role of HSP27 in Fas-Induced Apoptosis. Ann N Y Acad Sci 926: pp 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Charette SJ, Lavoie J N, Lambert H and Landry J (2000) Inhibition of Daxx-Mediated Apoptosis by Heat Shock Protein 27. Mol Cell Biol 20: pp 7602–7612.

    Article  PubMed  CAS  Google Scholar 

  • Christians ES, Zhou Q, Renard J and Benjamin I J (2003) Heat Shock Proteins in Mammalian Development. Semin Cell Dev Biol 14: pp 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Adams D J, Bjercke R J, Edwards D P and McGuire W L (1982) Immunohistochemical Detection of an Estrogen-Regulated Protein by Monoclonal Antibodies. Cancer Res 42: pp 4256–4258.

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Adams D J, Edwards D P, Bjercke R J and McGuire W L (1983) Distribution of an Estrogen-Induced Protein With a Molecular Weight of 24,000 in Normal and Malignant Human Tissues and Cells. Cancer Res 43: pp 1204-1210.

    Google Scholar 

  • Ciocca DR and Calderwood S K (2005) Heat Shock Proteins in Cancer: Diagnostic, Prognostic, Predictive, and Treatment Implications. Cell Stress Chaperones 10: pp 86–103.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Fuqua S A, Lock-Lim S, Toft D O, Welch W J and McGuire W L (1992) Response of Human Breast Cancer Cells to Heat Shock and Chemotherapeutic Drugs. Cancer Res 52: pp 3648–3654.

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Green S, Elledge R M, Clark G M, Pugh R, Ravdin P, Lew D, Martino S and Osborne C K (1998) Heat Shock Proteins Hsp27 and Hsp70: Lack of Correlation With Response to Tamoxifen and Clinical Course of Disease in Estrogen Receptor- Positive Metastatic Breast Cancer (a Southwest Oncology Group Study). Clin Cancer Res 4: pp 1263–1266.

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Oesterreich S, Chamness G C, McGuire W L and Fuqua S A (1993) Biological and Clinical Implications of Heat Shock Protein 27,000 (Hsp27): a Review. J Natl Cancer Inst 85: pp 1558–1570.

    Article  PubMed  CAS  Google Scholar 

  • Cleator S and Ashworth A (2004) Molecular Profiling of Breast Cancer: Clinical Implications. Br J Cancer 90: pp 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  • Concannon CG, Gorman A M and Samali A (2003) On the Role of Hsp27 in Regulating Apoptosis. Apoptosis 8: pp 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Concannon CG, Orrenius S and Samali A (2001) Hsp27 Inhibits Cytochrome C-Mediated Caspase Activation by Sequestering Both Pro-Caspase-3 and Cytochrome C. Gene Expr 9: pp 195–201.

    PubMed  CAS  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohaszka Z and Nardai G (1998) The 90-KDa Molecular Chaperone Family: Structure, Function, and Clinical Applications. A Comprehensive Review. Pharmacol Ther 79: pp 129–168.

    Article  PubMed  CAS  Google Scholar 

  • Cuesta R., Laroia G and and Schneider R.J. (2006) Chaperone Hsp27 Inhibits Translation During Heat Shock by Binding EIF4G and Facilitating Dissociation of Cap-Initiation Complexes. Genes Dev pp 1460–1469.

    Google Scholar 

  • Damstrup L, Andersen J, Kufe D W, Hayes D F and Poulsen H S (1992) Immunocytochemical Determination of the Estrogen-Regulated Proteins Mr 24,000, Mr 52,000 and DF3 Breast Cancer Associated Antigen: Clinical Value in Advanced Breast Cancer and Correlation With Estrogen Receptor. Ann Oncol 3: pp 71–77.

    PubMed  CAS  Google Scholar 

  • Darnell JE, Jr., Kerr I M and Stark G R (1994) Jak-STAT Pathways and Transcriptional Activation in Response to IFNs and Other Extracellular Signaling Proteins. Science 264: pp 1415–1421.

    Article  PubMed  CAS  Google Scholar 

  • Dennis JH, Budhram-Mahadeo V and Latchman D S (2001) The Brn-3b POU Family Transcription Factor Regulates the Cellular Growth, Proliferation, and Anchorage Dependence of MCF7 Human Breast Cancer Cells. Oncogene 20: pp 4961–4971.

    Article  PubMed  CAS  Google Scholar 

  • Dillmann WH (1999) Small Heat Shock Proteins and Protection Against Injury. Ann N Y Acad Sci 874: pp 66–68.

    Google Scholar 

  • Dunn DK, Whelan R D, Hill B and King R J (1993) Relationship of HSP27 and Oestrogen Receptor in Hormone Sensitive and Insensitive Cell Lines. J Steroid Biochem Mol Biol 46: pp 469–479.

    Article  PubMed  CAS  Google Scholar 

  • Edwards DP, Adams D J and McGuire W L (1981) Estrogen Regulation of Growth and Specific Protein Synthesis in Human Breast Cancer Cells in Tissue Culture. Adv Exp Med Biol 138: pp 133–149.

    PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M and Buchner J (1997) Binding of Non-Native Protein to Hsp25 During Heat Shock Creates a Reservoir of Folding Intermediates for Reactivation. EMBO J 16: pp 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Engel K, Ahlers A, Brach M A, Herrmann F and Gaestel M (1995) MAPKAP Kinase 2 Is Activated by Heat Shock and TNF-Alpha: in Vivo Phosphorylation of Small Heat Shock Protein Results From Stimulation of the MAP Kinase Cascade. J Cell Biochem 57: pp 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Fanelli MA, Cuello Carrion F D, Dekker J, Schoemaker J and Ciocca D R (1998) Serological Detection of Heat Shock Protein Hsp27 in Normal and Breast Cancer Patients. Cancer Epidemiol Biomarkers Prev 7: pp 791–795.

    PubMed  Google Scholar 

  • Farooqui-Kabir SR, Budhram-Mahadeo V, Lewis H, Latchman D S, Marber M S and Heads R J (2004) Regulation of Hsp27 Expression and Cell Survival by the POU Transcription Factor Brn3a. Cell Death Differ 11: pp 1242–1244.

    Article  PubMed  CAS  Google Scholar 

  • Ferns G, Shams S and Shafi S (2006) Heat Shock Protein 27: Its Potential Role in Vascular Disease. Int J Exp Pathol 87: pp 253–274.

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-Mediated Protein Folding. Physiol Rev 79: pp 425–449.

    PubMed  CAS  Google Scholar 

  • Fuqua SA, Blum-Salingaros M and McGuire W L (1989) Induction of the Estrogen-Regulated “24K” Protein by Heat Shock. Cancer Res 49: pp 4126–4129.

    PubMed  CAS  Google Scholar 

  • Gaestel M, Schroder W, Benndorf R, Lippmann C, Buchner K, Hucho F, Erdmann V A and Bielka H (1991) Identification of the Phosphorylation Sites of the Murine Small Heat Shock Protein Hsp25. J Biol Chem 266: pp 14721–14724.

    PubMed  CAS  Google Scholar 

  • Garrido C (2002) Size Matters: of the Small HSP27 and Its Large Oligomers. Cell Death Differ 9: pp 483–485.

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Bruey J M, Fromentin A, Hammann A, Arrigo A P and Solary E (1999) HSP27 Inhibits Cytochrome C-Dependent Activation of Procaspase-9 1. FASEB J 13: pp 2061–2070.

    PubMed  CAS  Google Scholar 

  • Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo A P, Chauffert B and Mehlen P (1997) HSP27 As a Mediator of Confluence-Dependent Resistance to Cell Death Induced by Anticancer Drugs. Cancer Res 57: pp 2661–2667.

    PubMed  CAS  Google Scholar 

  • Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A and Kroemer G (2003) HSP27 and HSP70: Potentially Oncogenic Apoptosis InhibitorsCell Cycle 2: pp 579–584.

    Google Scholar 

  • Greene JM, Larin Z, Taylor I C, Prentice H, Gwinn K A and Kingston R E (1987) Multiple Basal Elements of a Human Hsp70 Promoter Function Differently in Human and Rodent Cell Lines. Mol Cell Biol 7: pp 3646–3655.

    PubMed  CAS  Google Scholar 

  • Guay J, Lambert H, Gingras-Breton G, Lavoie J N, Huot J and Landry J (1997) Regulation of Actin Filament Dynamics by P38 Map Kinase-Mediated Phosphorylation of Heat Shock Protein 27. J Cell Sci 110 ( Pt 3): pp 357–368.

    Google Scholar 

  • Guy GR, Cairns J, Ng S B and Tan Y H (1993) Inactivation of a Redox-Sensitive Protein Phosphatase During the Early Events of Tumor Necrosis Factor/Interleukin-1 Signal Transduction. J Biol Chem 268: pp 2141–2148.

    PubMed  CAS  Google Scholar 

  • Hall JM, Couse J F and Korach K S (2001) The Multifaceted Mechanisms of Estradiol and Estrogen Receptor Signaling. J Biol Chem 276: pp 36869–36872.

    Article  PubMed  CAS  Google Scholar 

  • Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck S G and Fuqua S A (1999) Hsp27 Overexpression Inhibits Doxorubicin-Induced Apoptosis in Human Breast Cancer Cells. Breast Cancer Res Treat 56: pp 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Hart LL and Davie J R (2002) The Estrogen Receptor: More Than the Average Transcription Factor. Biochem Cell Biol 80: pp 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU (1996) Molecular Chaperones in Cellular Protein Folding. Nature 381: pp 571–579.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU and Hayer-Hartl M (2002) Molecular Chaperones in the Cytosol: From Nascent Chain to Folded Protein. Science 295: pp 1852–1858.

    Article  PubMed  CAS  Google Scholar 

  • Hickey E, Brandon S E, Potter R, Stein G, Stein J and Weber L A (1986) Sequence and Organization of Genes Encoding the Human 27 KDa Heat Shock Protein. Nucleic Acids Res 14: pp 4127–4145.

    Google Scholar 

  • Hightower LE (1991) Heat Shock, Stress Proteins, Chaperones, and Proteotoxicity. Cell 66: pp 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Horman S, Fokan D, Mosselmans R, Mairesse N and Galand P (1999) Anti-Sense Inhibition of Small-Heat-Shock-Protein (HSP27) Expression in MCF-7 Mammary-Carcinoma Cells Induces Their Spontaneous Acquisition of a Secretory Phenotype. Int J Cancer 82: pp 574–582.

    Article  PubMed  CAS  Google Scholar 

  • Horne GM, Angus B, Wright C, Needham G, Nicholson S, Harris A L, Innes B and Horne C H (1988) Relationships Between Oestrogen Receptor,Epidermal Growth Factor Receptor, ER-D5, and P24 Oestrogen Regulated Protein in Human Breast Cancer. J Pathol 155: pp 143–150.

    Google Scholar 

  • Huot J, Houle F, Spitz D R and Landry J (1996) HSP27 Phosphorylation-Mediated Resistance Against Actin Fragmentation and Cell Death Induced by Oxidative Stress. Cancer Res 56: pp 273–279.

    PubMed  CAS  Google Scholar 

  • Huot J, Lambert H, Lavoie J N, Guimond A, Houle F and Landry J (1995) Characterization of 45-KDa/54-KDa HSP27 Kinase, a Stress-Sensitive Kinase Which May Activate the Phosphorylation-Dependent Protective Function of Mammalian 27-KDa Heat-Shock Protein HSP27. Eur J Biochem 227: pp 416–427.

    Article  PubMed  CAS  Google Scholar 

  • Ioachim E, Tsanou E, Briasoulis E, Batsis C, Karavasilis V, Charchanti A, Pavlidis N and Agnantis N J (2003) Clinicopathological Study of the Expression of Hsp27, PS2, Cathepsin D and Metallothionein in Primary Invasive Breast Cancer. Breast 12: pp 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Irshad S, Pedley R B, Anderson J, Latchman D S and Budhram-Mahadeo V (2004) The Brn-3b Transcription Factor Regulates the Growth, Behavior, and Invasiveness of Human Neuroblastoma Cells in Vitro and in Vivo. J Biol Chem 279: pp 21617–21627.

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K and Buchner J (1993) Small Heat Shock Proteins Are Molecular Chaperones. J Biol Chem 268: pp 1517–1520.

    PubMed  CAS  Google Scholar 

  • Kim K, Barhoumi R, Burghardt R and Safe S (2005) Analysis of Estrogen Receptor Alpha-Sp1 Interactions in Breast Cancer Cells by Fluorescence Resonance Energy Transfer. Mol Endocrinol 19: pp 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Shuman J, Sette M and Przybyla A (1984) Nuclear Localization and Phosphorylation of Three 25-Kilodalton Rat Stress Proteins. Mol Cell Biol 4: pp 468–474.

    PubMed  CAS  Google Scholar 

  • Kindas-Mugge I, Micksche M and Trautinger F (1998) Modification of Growth in Small Heat Shock (Hsp27) Gene Transfected Breast Carcinoma. Anticancer Res 18: pp 413–417.

    PubMed  CAS  Google Scholar 

  • Kindas-Mugge I, Rieder C, Frohlich I, Micksche M and Trautinger F (2002) Characterization of Proteins Associated With Heat Shock Protein Hsp27 in the Squamous Cell Carcinoma Cell Line A431. Cell Biol Int 26: pp 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Klemenz R, Andres A C, Frohli E, Schafer R and Aoyama A (1993) Expression of the Murine Small Heat Shock Proteins Hsp 25 and Alpha B Crystallin in the Absence of Stress. J Cell Biol 120: pp 639-645.

    Article  PubMed  CAS  Google Scholar 

  • Klemenz R, Scheier B, Muller A, Steiger R and Aoyama A (1994) Alpha B Crystallin Expression in Response to Hormone, Oncogenes and Stress. Verh Dtsch Ges Pathol 78: pp 34–35.

    PubMed  CAS  Google Scholar 

  • Klinge CM (2001) Estrogen Receptor Interaction With Estrogen Response Elements. Nucleic Acids Res 29: pp 2905–2919.

    Article  PubMed  CAS  Google Scholar 

  • Lambert H, Charette S J, Bernier A F, Guimond A and Landry J (1999) HSP27 Multimerization Mediated by Phosphorylation-Sensitive Intermolecular Interactions at the Amino Terminus. J Biol Chem 274: pp 9378–9385.

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Chretien P, Laszlo A and Lambert H (1991) Phosphorylation of HSP27 During Development and Decay of Thermotolerance in Chinese Hamster Cells. J Cell Physiol 147: pp 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Landry J and Huot J (1999) Regulation of Actin Dynamics by Stress-Activated Protein Kinase 2 (SAPK2)-Dependent Phosphorylation of Heat-Shock Protein of 27 KDa (Hsp27). Biochem Soc Symp 64: pp 79–89.

    PubMed  CAS  Google Scholar 

  • Landry J, Lambert H, Zhou M, Lavoie J N, Hickey E, Weber L A and Anderson C W (1992) Human HSP27 Is Phosphorylated at Serines 78 and 82 by Heat Shock and Mitogen-Activated Kinases That Recognize the Same Amino Acid Motif As S6 Kinase II. J Biol Chem 267: pp 794–803.

    PubMed  CAS  Google Scholar 

  • Latchman DS (2002a) Gene Regulation: A Eukaryotic Perspective.

    Google Scholar 

  • Latchman DS (2002b) Protection of Neuronal and Cardiac Cells by HSP27. Prog Mol Subcell Biol 28: pp 253–265.

    CAS  Google Scholar 

  • Lavoie JN, Hickey E, Weber L A and Landry J (1993) Modulation of Actin Microfilament Dynamics and Fluid Phase Pinocytosis by Phosphorylation of Heat Shock Protein 27. J Biol Chem 268: pp 24210–24214.

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber L A and Landry J (1995) Modulation of Cellular Thermoresistance and Actin Filament Stability Accompanies Phosphorylation-Induced Changes in the Oligomeric Structure of Heat Shock Protein 27. Mol Cell Biol 15: pp 505–516.

    PubMed  CAS  Google Scholar 

  • Lee JH, Sun D, Cho K J, Kim M S, Hong M H, Kim I K, Lee J S and Lee J H (2007) Overexpression of Human 27 KDa Heat Shock Protein in Laryngeal Cancer Cells Confers Chemoresistance Associated With Cell Growth Delay. J Cancer Res Clin Oncol 133: pp 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Lee SA, Ndisang D, Patel C, Dennis J H, Faulkes D J, D’Arrigo C, Samady L, Farooqui-Kabir S, Heads R J, Latchman D S and Budhram-Mahadeo V S (2005) Expression of the Brn-3b Transcription Factor Correlates With Expression of HSP-27 in Breast Cancer Biopsies and Is Required for Maximal Activation of the HSP-27 Promoter. Cancer Res 65: pp 3072–3080.

    PubMed  CAS  Google Scholar 

  • Lemieux P, Oesterreich S, Lawrence J A, Steeg P S, Hilsenbeck S G, Harvey J M and Fuqua S A (1997) The Small Heat Shock Protein Hsp27 Increases Invasiveness but Decreases Motility of Breast Cancer Cells. Invasion Metastasis 17: pp 113–123.

    PubMed  CAS  Google Scholar 

  • Lindquist S and Craig E A (1988) The Heat-Shock Proteins. Annu Rev Genet 22: pp 631–677.

    Article  PubMed  CAS  Google Scholar 

  • Loft S and Poulsen H E (1996) Cancer Risk and Oxidative DNA Damage in Man. J Mol Med 74: pp 297–312.

    Article  PubMed  CAS  Google Scholar 

  • Loktionova SA and Kabakov A E (1998) Protein Phosphatase Inhibitors and Heat Preconditioning Prevent Hsp27 Dephosphorylation, F-Actin Disruption and Deterioration of Morphology in ATP-Depleted Endothelial Cells. FEBS Lett 433: pp 294-300.

    Google Scholar 

  • Love S and King R J (1994) A 27 KDa Heat Shock Protein That Has Anomalous Prognostic Powers in Early and Advanced Breast Cancer. Br J Cancer 69: pp 743–748.

    PubMed  CAS  Google Scholar 

  • Mairesse N, Bernaert D, Del Bino G, Horman S, Mosselmans R, Robaye B and Galand P (1998) Expression of HSP27 Results in Increased Sensitivity to Tumor Necrosis Factor, Etoposide, and H2O2 in an Oxidative Stress-Resistant Cell Line. J Cell Physiol 177: pp 606–617.

    Article  PubMed  CAS  Google Scholar 

  • Mairesse N, Horman S, Mosselmans R and Galand P (1996) Antisense Inhibition of the 27 KDa Heat Shock Protein Production Affects Growth Rate and Cytoskeletal Organization in MCF-7 Cells. Cell Biol Int 20: pp 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Malins DC, Polissar N L and Gunselman S J (1996) Progression of Human Breast Cancers to the Metastatic State Is Linked to Hydroxyl Radical-Induced DNA Damage. Proc Natl Acad Sci U S A 93: pp 2557–2563.

    Article  PubMed  CAS  Google Scholar 

  • Marin M, Karis A, Visser P, Grosveld F and Philipsen S (1997) Transcription Factor Sp1 Is Essential for Early Embryonic Development but Dispensable for Cell Growth and Differentiation. Cell 89: pp 619–628.

    Article  PubMed  CAS  Google Scholar 

  • Martin KJ, Kritzman B M, Price L M, Koh B, Kwan C P, Zhang X, Mackay A, O’Hare M J, Kaelin C M, Mutter G L, Pardee A B and Sager R (2000) Linking Gene Expression Patterns to Therapeutic Groups in Breast Cancer. Cancer Res 60: pp 2232–2238.

    PubMed  CAS  Google Scholar 

  • McDonnell DP and Norris J D (2002) Connections and Regulation of the Human Estrogen Receptor. Science 296: pp 1642–1644.

    Article  PubMed  CAS  Google Scholar 

  • Mearow KM, Dodge M E, Rahimtula M and Yegappan C (2002) Stress-Mediated Signaling in PC12 Cells – the Role of the Small Heat Shock Protein, Hsp27, and Akt in Protecting Cells From Heat Stress and Nerve Growth Factor Withdrawal. J Neurochem 83: pp 452–462.

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Kretz-Remy C, Briolay J, Fostan P, Mirault M E and Arrigo A P (1995a) Intracellular Reactive Oxygen Species As Apparent Modulators of Heat-Shock Protein 27 (Hsp27) Structural Organization and Phosphorylation in Basal and Tumour Necrosis Factor Alpha-Treated T47D Human Carcinoma Cells. Biochem J 312 ( Pt 2): pp 367–375.

    CAS  Google Scholar 

  • Mehlen P, Kretz-Remy C, Preville X and Arrigo A P (1996a) Human Hsp27, Drosophila Hsp27 and Human AlphaB-Crystallin Expression-Mediated Increase in Glutathione Is Essential for the Protective Activity of These Proteins Against TNFalpha-Induced Cell Death. EMBO J 15: pp 2695–2706.

    CAS  Google Scholar 

  • Mehlen P, Mehlen A, Guillet D, Preville X and Arrigo A P (1995b) Tumor Necrosis Factor-Alpha Induces Changes in the Phosphorylation, Cellular Localization, and Oligomerization of Human Hsp27, a Stress Protein That Confers Cellular Resistance to This Cytokine. J Cell Biochem 58: pp 248–259.

    Article  CAS  Google Scholar 

  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R and Arrigo A P (1995c) Constitutive Expression of Human Hsp27, Drosophila Hsp27, or Human Alpha B-Crystallin Confers Resistance to TNF- and Oxidative Stress-Induced Cytotoxicity in Stably Transfected Murine L929 Fibroblasts. J Immunol 154: pp 363–374.

    CAS  Google Scholar 

  • Mehlen P, Schulze-Osthoff K and Arrigo A P (1996b) Small Stress Proteins As Novel Regulators of Apoptosis. Heat Shock Protein 27 Blocks Fas/APO-1- and Staurosporine-Induced Cell Death. J Biol Chem 271: pp 16510–16514.

    Article  CAS  Google Scholar 

  • Merck KB, Groenen P J, Voorter C E, Haard-Hoekman W A, Horwitz J, Bloemendal H and de Jong WW (1993a) Structural and Functional Similarities of Bovine Alpha-Crystallin and Mouse Small Heat-Shock Protein. A Family of Chaperones. J Biol Chem 268: pp 1046–1052.

    CAS  Google Scholar 

  • Merck KB, Horwitz J, Kersten M, Overkamp P, Gaestel M, Bloemendal H and de Jong W W (1993b) Comparison of the Homologous Carboxy-Terminal Domain and Tail of Alpha-Crystallin and Small Heat Shock Protein. Mol Biol Rep 18: pp 209–215.

    Article  CAS  Google Scholar 

  • Miron T, Vancompernolle K, Vandekerckhove J, Wilchek M and Geiger B (1991) A 25-KD Inhibitor of Actin Polymerization Is a Low Molecular Mass Heat Shock Protein. J Cell Biol 114: pp 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Moretti-Rojas I, Fuqua S A, Montgomery R A, III and McGuire W L (1988) A CDNA for the Estradiol-Regulated 24K Protein: Control of MRNA Levels in MCF-7 Cells. Breast Cancer Res Treat 11: pp 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in Stress: Transcriptional Activation of Heat Shock Genes. Science 259: pp 1409–1410.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (2002) Dynamic Remodeling of Transcription Complexes by Molecular Chaperones. Cell 110: pp 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Kline M P, Bimston D N and Cotto J J (1997) The Heat-Shock Response: Regulation and Function of Heat-Shock Proteins and Molecular Chaperones. Essays Biochem 32: pp 17–29.

    PubMed  CAS  Google Scholar 

  • Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S and Kiyama H (2003) Expression of the Activating Transcription Factor 3 Prevents C-Jun N-Terminal Kinase-Induced Neuronal Death by Promoting Heat Shock Protein 27 Expression and Akt Activation. J Neurosci 23: pp 5187–5196.

    PubMed  CAS  Google Scholar 

  • Nohl H, Kozlov A V, Gille L and Staniek K (2003) Cell Respiration and Formation of Reactive Oxygen Species: Facts and Artefacts. Biochem Soc Trans 31: pp 1308–1311.

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA and Morimoto R I (2002) Chaperoning Signaling Pathways: Molecular Chaperones As Stress-Sensing ‘Heat Shock’ Proteins. J Cell Sci 115: pp 2809–2816.

    PubMed  CAS  Google Scholar 

  • O’Neill PA, Shaaban A M, West C R, Dodson A, Jarvis C, Moore P, Davies M P, Sibson D R and Foster C S (2004) Increased Risk of Malignant Progression in Benign Proliferating Breast Lesions Defined by Expression of Heat Shock Protein 27. Br J Cancer 90: pp 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Oesterreich S, Hickey E, Weber L A and Fuqua S A (1996a) Basal Regulatory Promoter Elements of the Hsp27 Gene in Human Breast Cancer Cells. Biochem Biophys Res Commun 222: pp 155–163.

    Article  CAS  Google Scholar 

  • Oesterreich S, Hilsenbeck S G, Ciocca D R, Allred D C, Clark G M, Chamness G C, Osborne C K and Fuqua S A (1996b) The Small Heat Shock Protein HSP27 Is Not an Independent Prognostic Marker in Axillary Lymph Node-Negative Breast Cancer Patients. Clin Cancer Res 2: pp 1199–1206.

    CAS  Google Scholar 

  • Oesterreich S, Lee A V, Sullivan T M, Samuel S K, Davie J R and Fuqua S A (1997) Novel Nuclear Matrix Protein HET Binds to and Influences Activity of the HSP27 Promoter in Human Breast Cancer Cells. J Cell Biochem 67: pp 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Oesterreich S, Weng C N, Qiu M, Hilsenbeck S G, Osborne C K and Fuqua S A (1993) The Small Heat Shock Protein Hsp27 Is Correlated With Growth and Drug Resistance in Human Breast Cancer Cell Lines. Cancer Res 53: pp 4443–4448.

    PubMed  CAS  Google Scholar 

  • Oesterreich S, Zhang Q, Hopp T, Fuqua S A, Michaelis M, Zhao H H, Davie J R, Osborne C K and Lee A V (2000) Tamoxifen-Bound Estrogen Receptor (ER) Strongly Interacts With the Nuclear Matrix Protein HET/SAF-B, a Novel Inhibitor of ER-Mediated Transactivation. Mol Endocrinol 14: pp 369–381.

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D and Kharbanda S (2000) Hsp27 Functions As a Negative Regulator of Cytochrome C-Dependent Activation of Procaspase-3. Oncogene 19: pp 1975–1981.

    Article  PubMed  CAS  Google Scholar 

  • Parcellier A, Gurbuxani S, Schmitt E, Solary E and Garrido C (2003) Heat Shock Proteins, Cellular Chaperones That Modulate Mitochondrial Cell Death Pathways. Biochem Biophys Res Commun 304: pp 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Parker MG (1998) Transcriptional Activation by Oestrogen Receptors. Biochem Soc Symp 63: pp 45–50.

    PubMed  CAS  Google Scholar 

  • Parker MG, Arbuckle N, Dauvois S, Danielian P and White R (1993) Structure and Function of the Estrogen Receptor. Ann N Y Acad Sci 684: pp 119–126.

    Google Scholar 

  • Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S and Arrigo A P (2002) Hsp27 As a Negative Regulator of Cytochrome C Release. Mol Cell Biol 22: pp 816–834.

    PubMed  CAS  Google Scholar 

  • Pelham HR (1982) A Regulatory Upstream Promoter Element in the Drosophila Hsp 70 Heat-Shock Gene. Cell 30: pp 517–528.

    Article  PubMed  CAS  Google Scholar 

  • Pinhasi-Kimhi O, Michalovitz D, Ben Zeev A and Oren M (1986) Specific Interaction Between the P53 Cellular Tumour Antigen and Major Heat Shock Proteins. Nature 320: pp 182–184.

    Article  PubMed  CAS  Google Scholar 

  • Pirkkala L, Nykanen P and Sistonen L (2001) Roles of the Heat Shock Transcription Factors in Regulation of the Heat Shock Response and Beyond. FASEB J 15: pp 1118–1131.

    Article  PubMed  CAS  Google Scholar 

  • Porter W, Saville B, Hoivik D and Safe S (1997) Functional Synergy Between the Transcription Factor Sp1 and the Estrogen Receptor. Mol Endocrinol 11: pp 1569–1580.

    Article  PubMed  CAS  Google Scholar 

  • Porter W, Wang F, Duan R, Qin C, Castro-Rivera E, Kim K and Safe S (2001) Transcriptional Activation of Heat Shock Protein 27 Gene Expression by 17beta-Estradiol and Modulation by Antiestrogens and Aryl Hydrocarbon Receptor Agonists. J Mol Endocrinol 26: pp 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Porter W, Wang F, Wang W, Duan R and Safe S (1996) Role of Estrogen Receptor/Sp1 Complexes in Estrogen-Induced Heat Shock Protein 27 Gene Expression. Mol Endocrinol 10: pp 1371–1378.

    Article  PubMed  CAS  Google Scholar 

  • Rane MJ, Pan Y, Singh S, Powell D W, Wu R, Cummins T, Chen Q, McLeish K R and Klein J B (2003) Heat Shock Protein 27 Controls Apoptosis by Regulating Akt Activation. J Biol Chem 278: pp 27828–27835.

    Article  PubMed  CAS  Google Scholar 

  • Regazzi R, Eppenberger U and Fabbro D (1988) The 27,000 Daltons Stress Proteins Are Phosphorylated by Protein Kinase C During the Tumor Promoter-Mediated Growth Inhibition of Human Mammary Carcinoma Cells. Biochem Biophys Res Commun 152: pp 62–68.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Landsberg C and Goldbaum O (2003) Stress Proteins in Neural Cells: Functional Roles in Health and Disease. Cell Mol Life Sci 60: pp 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L, Nelson C and Gleave M (2006) Small Interference RNA Targeting Heat-Shock Protein 27 Inhibits the Growth of Prostatic Cell Lines and Induces Apoptosis Via Caspase-3 Activation in Vitro. BJU Int 98: pp 1082–1089.

    Article  PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo A P, Buchner J and Gaestel M (1999) Regulation of Hsp27 Oligomerization, Chaperone Function, and Protective Activity Against Oxidative Stress/Tumor Necrosis Factor Alpha by Phosphorylation. J Biol Chem 274: pp 18947–18956.

    Article  PubMed  CAS  Google Scholar 

  • Rohde M, Daugaard M, Jensen M H, Helin K, Nylandsted J and Jaattela M (2005) Members of the Heat-Shock Protein 70 Family Promote Cancer Cell Growth by Distinct Mechanisms. Genes Dev 19: pp 570–582.

    Article  PubMed  CAS  Google Scholar 

  • Rust W, Kingsley K, Petnicki T, Padmanabhan S, Carper S W and Plopper G E (1999) Heat Shock Protein 27 Plays Two Distinct Roles in Controlling Human Breast Cancer Cell Migration on Laminin-5. Mol Cell Biol Res Commun 1: pp 196–202.

    Article  PubMed  CAS  Google Scholar 

  • Safe S (2001) Transcriptional Activation of Genes by 17 Beta-Estradiol Through Estrogen Receptor-Sp1 Interactions. Vitam Horm 62: pp 231–252.

    Article  PubMed  CAS  Google Scholar 

  • Samady L, Dennis J, Budhram-Mahadeo V and Latchman D S (2004) Activation of CDK4 Gene Expression in Human Breast Cancer Cells by the Brn-3b POU Family Transcription Factor. Cancer Biol Ther 3: pp 317–323.

    PubMed  CAS  Google Scholar 

  • Samali A, Robertson J D, Peterson E, Manero F, van Zeijl L, Paul C, Cotgreave I A, Arrigo A P and Orrenius S (2001) Hsp27 Protects Mitochondria of Thermotolerant Cells Against Apoptotic Stimuli. Cell Stress Chaperones 6: pp 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer TS, Sanders L K and Nathans D (1995) Cooperative Transcriptional Activity of Jun and Stat3 Beta, a Short Form of Stat3. Proc Natl Acad Sci U S A 92: pp 9097–9101.

    Article  PubMed  CAS  Google Scholar 

  • Schafer ZT and Kornbluth S (2006) The Apoptosome: Physiological, Developmental, and Pathological Modes of Regulation. Dev Cell 10: pp 549–561.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CA, Fridman J S, Yang M, Baranov E, Hoffman R M and Lowe S W (2002) Dissecting P53 Tumor Suppressor Functions in Vivo. Cancer Cell 1: pp 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Sen P, Mukherjee S, Ray D and Raha S (2003) Involvement of the Akt/PKB Signaling Pathway With Disease Processes. Mol Cell Biochem 253: pp 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Seymour L, Bezwoda W R and Meyer K (1990a) Tumor Factors Predicting for Prognosis in Metastatic Breast Cancer. The Presence of P24 Predicts for Response to Treatment and Duration of Survival. Cancer 66: pp 2390–2394.

    Article  CAS  Google Scholar 

  • Seymour L, Bezwoda W R, Meyer K and Behr C (1990b) Detection of P24 Protein in Human Breast Cancer: Influence of Receptor Status and Oestrogen Exposure. Br J Cancer 61: pp 886–890.

    CAS  Google Scholar 

  • Shin KD, Lee M Y, Shin D S, Lee S, Son K H, Koh S, Paik Y K, Kwon B M and Han D C (2005) Blocking Tumor Cell Migration and Invasion With Biphenyl Isoxazole Derivative KRIBB3, a Synthetic Molecule That Inhibits Hsp27 Phosphorylation. J Biol Chem 280: pp 41439–41448.

    Article  PubMed  CAS  Google Scholar 

  • Sommer S and Fuqua S A (2001) Estrogen Receptor and Breast Cancer. Semin Cancer Biol 11: pp 339–352.

    Article  PubMed  CAS  Google Scholar 

  • Son WY, Hwang S H, Han C T, Lee J H, Kim S and Kim Y C (1999) Specific Expression of Heat Shock Protein HspA2 in Human Male Germ Cells. Mol Hum Reprod 5: pp 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  • Song H, Ethier S P, Dziubinski M L and Lin J (2004) Stat3 Modulates Heat Shock 27kDa Protein Expression in Breast Epithelial Cells. Biochem Biophys Res Commun 314: pp 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK (1991) Heat Shock Factor and the Heat Shock Response. Cell 65: pp 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Storm FK, Gilchrist K W, Warner T F and Mahvi D M (1995) Distribution of Hsp-27 and HER-2/Neu in in Situ and Invasive Ductal Breast Carcinomas. Ann Surg Oncol 2: pp 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Storm FK, Mahvi D M and Gilchrist K W (1996) Heat Shock Protein 27 Overexpression in Breast Cancer Lymph Node Metastasis. Ann Surg Oncol 3: pp 570–573.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe K, Akamatsu S, Suga H, Takai S, Kato K, Dohi S and Kozawa O (2005) Midazolam Suppresses Thrombin-Induced Heat Shock Protein 27 Phosphorylation Through Inhibition of P38 Mitogen-Activated Protein Kinase in Cardiac Myocytes. J Cell Biochem 96: pp 56–64.

    Article  PubMed  CAS  Google Scholar 

  • Tavaria M, Gabriele T, Kola I and Anderson R L (1996) A Hitchhiker’s Guide to the Human Hsp70 Family. Cell Stress Chaperones 1: pp 23–28.

    Article  PubMed  CAS  Google Scholar 

  • Teimourian S, Jalal R, Sohrabpour M and Goliaei B (2006) Down-Regulation of Hsp27 Radiosensitizes Human Prostate Cancer Cells. Int J Urol 13: pp 1221–1225.

    Article  PubMed  CAS  Google Scholar 

  • Terman A and Brunk U T (2004) Lipofuscin. Int J Biochem Cell Biol 36: pp 1400–1404.

    Article  PubMed  CAS  Google Scholar 

  • Tetu B, Brisson J, Landry J and Huot J (1995) Prognostic Significance of Heat-Shock Protein-27 in Node-Positive Breast Carcinoma: an Immunohistochemical Study. Breast Cancer Res Treat 36: pp 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Thor A, Benz C, Moore D, Goldman E, Edgerton S, Landry J, Schwartz L, Mayall B, Hickey E and Weber L A (1991) Stress Response Protein (Srp-27) Determination in Primary Human Breast Carcinomas: Clinical, Histologic, and Prognostic Correlations. J Natl Cancer Inst 83: pp 170–178.

    Google Scholar 

  • Tonkiss J and Calderwood S K (2005) Regulation of Heat Shock Gene Transcription in Neuronal Cells. Int J Hyperthermia 21: pp 433–444.

    Article  PubMed  CAS  Google Scholar 

  • van Nimwegen MJ, Huigsloot M, Camier A, Tijdens I B and van de W B (2006) Focal Adhesion Kinase and Protein Kinase B Cooperate to Suppress Doxorubicin-Induced Apoptosis of Breast Tumor Cells. Mol Pharmacol 70: pp 1330–1339.

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Roig LM, Fanelli M A, Lopez L A, Gago F E, Tello O, Aznar J C and Ciocca D R (1997) Heat Shock Proteins and Cell Proliferation in Human Breast Cancer Biopsy Samples. Cancer Detect Prev 21: pp 441–451.

    PubMed  CAS  Google Scholar 

  • Vargas-Roig LM, Gago F E, Tello O, Aznar J C and Ciocca D R (1998) Heat Shock Protein Expression and Drug Resistance in Breast Cancer Patients Treated With Induction Chemotherapy. Int J Cancer 79: pp 468–475.

    Article  PubMed  CAS  Google Scholar 

  • Veronesi U, Boyle P, Goldhirsch A, Orecchia R and Viale G (2005) Breast Cancer. Lancet 365: pp 1727–1741.

    Article  PubMed  Google Scholar 

  • Vertii A, Hakim C, Kotlyarov A and Gaestel M (2006) Analysis of Properties of Small Heat Shock Protein Hsp25 in MAPK-Activated Protein Kinase 2 (MK2)-Deficient Cells: MK2-Dependent Insolubilization of Hsp25 Oligomers Correlates With Susceptibility to Stress. J Biol Chem 281: pp 26966–26975.

    Article  PubMed  CAS  Google Scholar 

  • Waris G and Ahsan H (2006) Reactive Oxygen Species: Role in the Development of Cancer and Various Chronic Conditions. J Carcinog 5: pp 14.

    Article  PubMed  CAS  Google Scholar 

  • Wei H (1992) Activation of Oncogenes and/or Inactivation of Anti-Oncogenes by Reactive Oxygen Species. Med Hypotheses 39: pp 267–270.

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ (1992) Mammalian Stress Response: Cell Physiology, Structure/Function of Stress Proteins, and Implications for Medicine and Disease. Physiol Rev 72: pp 1063–1081.

    PubMed  CAS  Google Scholar 

  • Welch WJ (1993) Heat Shock Proteins Functioning As Molecular Chaperones: Their Roles in Normal and Stressed Cells. Philos Trans R Soc Lond B Biol Sci 339: pp 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Whelan RD and Hill B T (1993) Differential Expression of Steroid Receptors, Hsp27, and PS2 in a Series of Drug Resistant Human Breast Tumor Cell Lines Derived Following Exposure to Antitumor Drugs or to Fractionated X-Irradiation. Breast Cancer Res Treat 26: pp 23–39.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Chen S and Bergan R C (2006) MAPKAPK2 and HSP27 Are Downstream Effectors of P38 MAP Kinase-Mediated Matrix Metalloproteinase Type 2 Activation and Cell Invasion in Human Prostate Cancer. Oncogene 25: pp 2987–2998.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Okamoto A, Isonishi S, Ochiai K and Ohtake Y (2001) Heat Shock Protein 27 Was Up-Regulated in Cisplatin Resistant Human Ovarian Tumor Cell Line and Associated With the Cisplatin Resistance. Cancer Lett 168: pp 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Khosravi-Far R, Chang H Y and Baltimore D (1997) Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis. Cell 89: pp 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  • Yenari MA (2002) Heat Shock Proteins and Neuroprotection. Adv Exp Med Biol 513: pp 281–299.

    PubMed  CAS  Google Scholar 

  • Zantema A, Verlaan-De Vries M, Maasdam D, Bol S and van der E A (1992) Heat Shock Protein 27 and Alpha B-Crystallin Can Form a Complex, Which Dissociates by Heat Shock. J Biol Chem 267: pp 12936–12941.

    PubMed  CAS  Google Scholar 

  • Zheng C, Lin Z, Zhao Z J, Yang Y, Niu H and Shen X (2006) MAPK-Activated Protein Kinase-2 (MK2)-Mediated Formation and Phosphorylation-Regulated Dissociation of the Signal Complex Consisting of P38, MK2, Akt, and Hsp27. J Biol Chem 281: pp 37215–37226.

    Article  PubMed  CAS  Google Scholar 

  • Zhong Z, Wen Z and Darnell J E, Jr. (1994) Stat3: a STAT Family Member Activated by Tyrosine Phosphorylation in Response to Epidermal Growth Factor and Interleukin-6. Science 264: pp 95–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Budhram-Mahadeo, V.S., Heads, R.J. (2007). Heat Shock Protein-27 (Hsp-27) in Breast Cancers: Regulation of Expression and Function. In: Calderwood, S.K., Sherman, M.Y., Ciocca, D.R. (eds) Heat Shock Proteins in Cancer. Heat Shock Proteins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6401-2_5

Download citation

Publish with us

Policies and ethics