The Early Earth's Record of Supposed Extremophilic Bacteria and Cyanobacteria, at 3.8 to 2.5 GA

  • Wladyslaw Altermann
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

The unambiguous evidence for the presence of life in the Archean is only limited by the preservation potential of sedimentary rocks. Throughout Earth’ preserved sedimentary deposits, prokaryotic bodily fossils and geochemical fossils, for example, products of the Calvin-cycle dependent carbon isotopic fractionation, can be found. Nevertheless, irreproducible analyses in organic geochemistry, misinterpretations of artifacts from sample preparation and of organic contaminants, and uncertainties on the age and nature of the Archean rock formations are copious in evaluation of the earliest traces of life.

The understanding of geological processes strongly influence discussions of the ancient, supposed biological relicts from c. 3.8 billion years old (3.8 Ga) metasedimentary rocks. The evidence for prokaryotic bodily preserved microfossils of the Neoarchean, at 2.7 to 2.5 Ga is by orders of magnitude stronger, as rocks of this age are abundant and better preserved.


Greenstone Belt Carbonaceous Matter Archean Rock Precambrian Research Petroleum Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., and Burch, I.W. (2006) Stromatolite reef from the early Archean era of Australia. Nature 441, 714-718.CrossRefPubMedGoogle Scholar
  2. Altermann, W. (2005) The 3.5 Ga Apex fossil assemblage - consequences of an enduring discussion. 14th International Conference on the Origin of Life, ISSOL’05, Beijing, China, Abstract vol., 136-137.Google Scholar
  3. Altermann, W. and Kazmierczak, J. (2003) Archean microfossils: a reappraisal of early life on Earth. Res. Microbiol. 154, 611-617.CrossRefPubMedGoogle Scholar
  4. Altermann, W. and Schopf, J.W. (1995) Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evo-lutionary implications. Precambrian Research 75, 65-90.CrossRefPubMedGoogle Scholar
  5. Altermann, W., Kazmierczak, J., Oren, A., and Wright, D. (2006) Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of Earth history. Geobiology 4, 147-166.CrossRefGoogle Scholar
  6. Beaumont, V. and Robert, F. (1999) Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Research 96, 63-82.CrossRefGoogle Scholar
  7. Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., van Kranendonk, M.J., Lindsay, J.F., Steele, A., and Grassineau, N.V. (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416,76-81.CrossRefPubMedGoogle Scholar
  8. Brasier, M., Green O., Lindsay, J., and Steele, A. (2004) Earth’s oldest (3.5 Ga) fossils and the, ‘Early Eden Hypothesis’: questioning the evidence. Origins Life Evol. Biosphere 34, 257-269.CrossRefGoogle Scholar
  9. Brocks, J.J., Logan, G.A., Buick, R., and Summons, R.E. (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033-1036.CrossRefPubMedGoogle Scholar
  10. Buick, R. (1991) Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 My old chert-barite unit at North Pole, Western Australia. Palaios 5, 441-459.CrossRefGoogle Scholar
  11. Buick, R. and Dunlop, J.S.R. (1990) Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37. 247-277.CrossRefGoogle Scholar
  12. Buick, R., Dunlop, J.S.R., and Groves, D.I. (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5, 161-181.CrossRefGoogle Scholar
  13. Cowen, J.P., Giovannoni, S.J., Kenig, F., Johnson, H.P., Butterfield, D., Rappe, M.S., Hutnak, M. and Lam, P. (2003) Fluids from aging ocean crust that support microbial life. Science 299, 120-123.CrossRefPubMedGoogle Scholar
  14. D’Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.-U., Holm, N.G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C.H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Naranjo Padilla, C., and Solis Acosta, J.L. (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216-2221.CrossRefPubMedGoogle Scholar
  15. Diener, J.F.A., Stevens, G., Kisters, A.F.M., and Poujol, M. (2005) Metamorphism and exhumation of the basal parts of the Barberton greenstone belt, South Africa: constraining the rates of Mesoarchean tectonism. Precambrian Research 143, 87-112.CrossRefGoogle Scholar
  16. Einen, J., Krober, C., Ovreas, L., Thorseth, I., and Torsvis, T. (2004) Biodegradation of basaltic glass - an experimental approach. International Workshop Geomicrobiology “A Research Area in Progress”, University Aarhus, Denmark, Program & Abstract vol., p 55.Google Scholar
  17. Fedo, C.M. and Whitehouse, M.J. (2002) Metasomatic origin of quartz-pyroxene rock Akilia, Greenland, and implications for earth’s earliest life. Science 296, 1448-1452.CrossRefPubMedGoogle Scholar
  18. Friend, C.R.L., Nutman, A.P., and Bennet, V.C. (2002) Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science 298, 917.Google Scholar
  19. Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H., and de Wit, M. (2004) Early life recorded in Archean pillow lavas. Science 304, 378-281.CrossRefGoogle Scholar
  20. Hayes, J.M. (2006) The pathways of carbon in nature. Science, 312, 1605-1606.CrossRefPubMedGoogle Scholar
  21. Hebting, Y., Schaeffer, P., Behrens, A., Adam, P., Schmitt, G., Schneckenburger, P., Bernasconi, S.M., and Albrecht, P. (2006) Biomarker evidence for a major preservation pathway of sedimentary organic carbon. Science 312, 1627-1631.CrossRefPubMedGoogle Scholar
  22. House, C.H., Schopf, J.W., McKeegan, K.D., Coath, C.D., Harrison, T.M., and Stetter, K.O. (2000). Carbon isotopic composition of individual Precambrian microfossils. Geology 28, 707-710.CrossRefPubMedGoogle Scholar
  23. Hofmann, A. (2005) The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research 143, 23-49.CrossRefGoogle Scholar
  24. Iller, R.K. (1979) The Chemistry of Silica. John Wiley & Sons, New York, 866 pp.Google Scholar
  25. Islas, S., Velasco, A.M., Becerra, A., and Lazcano, A. (2003) Hyperthermophily and the origin and early evolution of life. International Microbiology 6, 87-94.CrossRefPubMedGoogle Scholar
  26. Kappler, A., Pasquero, C., Konhauser, K.O., and Newman, D.K. (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865-868.CrossRefGoogle Scholar
  27. Kazmierczak, J. and Altermann, W. (2002) Neoarchean biomineralization by benthic cyanobacteria. Science 298, 2351.CrossRefPubMedGoogle Scholar
  28. Kazmierczak, J., Kempe, S., and Altermann, W. (2004) Microbial origin of Precambrian carbonates: lessons from modern analogues. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, and O. Catuneanu, (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology. Amsterdam: Elsevier, pp. 545-563.Google Scholar
  29. Kempe, A., Wirth, R., (Altermann, W., Stark, R.W., Schopf, J.W., and Heckl, W.M. (2005) Focussed ion beam preparation and in situ nanoscopic study of Precambrian acritarchs. Precambrian Research 140, 36-54.Google Scholar
  30. Kempe, S. and Kazmierczak, J. (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems and biocalcification processes, In: F. Doumenge (ed.), Past and Present Biomineralization Processes - Considerations about the Carbonate Cycle. IUCN-COE Workshop, Monaco, 1993, Bulletin Inst. Oceanographique. Monaco no. sp. 13, 61-117.Google Scholar
  31. Klein, C., Beukes, N.J., and Schopf, J.W. (1987) Filamentous microfossils from the Early Proterozoic Transvaal Supergroup: their morphology, significance, and paleoenvironmental setting. Precambrian Research 36, 81-94.CrossRefGoogle Scholar
  32. Knauth, L.P. and Lowe, D.R. (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bulletin, 115, 566-580.CrossRefGoogle Scholar
  33. Lanier, W.P. (1986) Approximate growth rates of Early Proterozoic microstromatolites as deduced by biomass productivity. Palaios 1, 525-542.CrossRefGoogle Scholar
  34. Lepland, A., Arrhenius, G., and Cornell, D. (2002) Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Research 118, 221-241.CrossRefGoogle Scholar
  35. Lindsay, J.F., Brasier, M.D., McLoughlin, N., Green, O.R., Fogel, M., Steele, A., and Mertzman, S.A. (2005) The problem of deep carbon - an Archean paradox. Precambrian Research 143, 1-22.CrossRefGoogle Scholar
  36. Lowe, D.R. and Byerly, G. R. (1999) Geological evolution of the Barberton greenstone belt, South Africa. Geological Society of America Special Paper 329, 319 p.Google Scholar
  37. MacLeod, G., McKeown, C., Hall, A.J., and Russel, M.J. (1994) Hydrothermal and oceanic pH con-ditions of possible relevance to the origin of life. Origins of Life and Evolution of the Biosphere 24,19-41.CrossRefPubMedGoogle Scholar
  38. Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R.L. (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384, 55-59.CrossRefPubMedGoogle Scholar
  39. Mojzsis, S.J. and Harrison, T.M. (2002) Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science 298, 917.Google Scholar
  40. Myers, J.S. (2004) Isua enigmas: illusive tectonic, sedimentary, volcanic and organic features of the >3.7 Ga Isua greenstone belt, Southwest Greenland. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, and O. Catuneanu, (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology. Amsterdam, Elsevier, pp. 66-73.Google Scholar
  41. Nijman, W. and de Vries, S.T. (2004) Early Archean crustal collapse structures and sedimentary basin dynamics. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, and O. Catuneanu, (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology. Amsterdam: Elsevier, pp. 139-154.Google Scholar
  42. Ohmoto, H. (2004) Archean atmosphere, hydrosphere and biosphere. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, and O. Catuneanu, (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology. Amsterdam: Elsevier, pp. 361-387.Google Scholar
  43. Olson, J.M. (2006) Photosynthesis in the Archean era. Photosynthesis Research 88, 109-117.CrossRefPubMedGoogle Scholar
  44. Pasteris, J.D. and Wopenka, B. (2003) Necessary, but not sufficient: Raman identification of disor-dered carbon as a signature of ancient life. Astrobiology 3, 727-738.CrossRefPubMedGoogle Scholar
  45. Pinti, D.L., Hashizume, K., and Matsuda, J. (2001) Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: clues on the chemical state of the Archean ocean and the deep biosphere. Geochimica Cosmochimica Acta 65, 2301-2315.CrossRefGoogle Scholar
  46. Robert, F. and Chaussidon, M. (2006) A paleotemperature for Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969-972.CrossRefPubMedGoogle Scholar
  47. Rosing, M.T. and Frei, R. (2004) U-rich Archean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis. Earth and Planetary Science Letters 217, 237-244.CrossRefGoogle Scholar
  48. Schidlowski, M., Appel, P.W.U., Eichmann, R., and Junge, C.E. (1979) Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland - implications for the Archean carbon and oxygen cycles. Geochimica Cosmochimica Acta 43, 189-199.CrossRefGoogle Scholar
  49. Schopf, J.W. (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260, 640-646.CrossRefPubMedGoogle Scholar
  50. Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J., and Czaja, A.D. (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416, 73-76.CrossRefPubMedGoogle Scholar
  51. Schopf, J.W. (2004) Earth’s earliest biosphere: status of the hunt. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W. Mueller, and O. Catuneanu, (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology. Amsterdam: Elsevier, pp. 516-538.Google Scholar
  52. Shen, Y., Buick, R. and Canfield, D.E. (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77-81.CrossRefPubMedGoogle Scholar
  53. Sleep, N.H. and Hessler, A.M. (2006) Weatheringof quartz as an Archean climatic indicator. Earth and Planetary Science Letters 241, 594-602CrossRefGoogle Scholar
  54. Tice, M.M. and Lowe, D.R. (2004a) Photosynthetic microbial mats in the 3.416 Myr-old ocean. Nature 431, 549-552.CrossRefPubMedGoogle Scholar
  55. Tice, M.M. and Lowe, D.R. (2004b) Geologic evidence for Archean atmospheric and climatic evolu-tion: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32, 493-496.CrossRefGoogle Scholar
  56. Tice, M.M. and Lowe, D.R. (2006a) Hydrogen-based carbon fixation in the earliest known photo-synthetic organisms. Geology 34, 37-40.CrossRefGoogle Scholar
  57. Tice, M.M. and Lowe, D.R. (2006b) The origin of carbonaceous matter in pre-3.0 Ga greenstone ter-rains: a review and new evidence from the 3.42 Ga Buck Reef Chert. Earth-Science Reviews 76, 259-300.CrossRefGoogle Scholar
  58. Toth, J. (1980) Cross-formational gravity flow of groundwater: a mechanism of the transport and accumulation of petroleum (the generalized hydraulic theory of petroleum migration. In: W.H. Roberts and R.J. Cordell (eds.) Problems of Petroleum Migration. AAPG Studies in Geology 10, 121-167.Google Scholar
  59. Turner, S. Huang, T.-C., and Chaw, S.-M. (1997) Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria, Botany Bulletin Academia Sinica 42, 181-186.Google Scholar
  60. Ueno, Y., Isozaki, Y., Yurimoto, H., and Maruyama, S. (2001) Carbon isotopic signatures of individ-ual Archean microfossils(?) from Western Australia. International Geology Review 40, 196-212.CrossRefGoogle Scholar
  61. Ueno, Y., Yoshioka, H., Maruyama, S., and Isozaki, Y. (2004) Carbon Isotopes and petrography of kerogens in ∼3.5Ga hydrothermal silica dikes in the North Pole area, Western Australia. Geochimica et Cosmochimica Acta 68, 573-589.CrossRefGoogle Scholar
  62. Ueno, Y. Isozaki, Y., and McNamara, K.J. (2006a) Coccoid-like microstructures in a 3.0 Ga chert from Western Australia. International Geology Review 48, 2006, 78-88.CrossRefGoogle Scholar
  63. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., and Isozaki, Y. (2006b) Evidence from fluid inclu-sions for microbial methanogenesis in the early Archaean era. Nature 440, 516-519.CrossRefPubMedGoogle Scholar
  64. Van Kranendonk, M.J. (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Science Reviews 74, 197-240.CrossRefGoogle Scholar
  65. Van Zuilen, M.A. Lepland, A., and Arrhenius, G. (2002) Reassessing the evidence for the earliest traces of life. Nature 418, 627-630.Google Scholar
  66. Walsh, M.M., 1992. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Research 54, 271-293.CrossRefPubMedGoogle Scholar
  67. Walsh, M.M. and Lowe, D.R. 1985. Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530-532.CrossRefGoogle Scholar
  68. Westall, F. and Folk, R.L. (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: implications for the search for life in ancient rocks. Precambrian Research 126, 313-330.CrossRefGoogle Scholar
  69. Wright, D.T. and Altermann, W. 2000. Microfacies development in Late Archaean stromatolites and oolites of the Campbellrand Subgroup, South Africa. In: E. Insalco, P.W. Skelton, and T.J. Palmer (eds.) Carbonate Platform Systems. Components and Interactions. Geological Society London, special publication 178, pp. 51-70.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Wladyslaw Altermann
    • 1
  1. 1.Department of Earth – and Environmental SciencesLudwig Maximilians University & GeoBioCenterGermany

Personalised recommendations