Skip to main content

Abstract

Soil-water-deficit stress causes many changes in the biology of the plant cell beginning with the perception of the stress followed by changes that promote the acclimation to the stress. The mechanism by which plant cells transduce the physical stress of loss of water to biochemical changes in the cell continues to elude plant biologists. Using modern techniques that allow measurements of thousands of changes in gene expression at one time, researchers have catalogued and are beginning to make progress in interpreting the function of the many changes in gene expression. Although, it still remains a challenge to understand the function and relevance of many of these responses. There are indications that laboratory stress conditions intended to mimic plant water-deficit stress do not cause a universal water stress response; only a small number of genes are commonly induced when plants are subjected to water-deficit stress in different laboratories. Researchers remain optimistic that lessons learned from the molecular response of Arabidopsis plants to stress can be used to improve crops for growth under non ideal field conditions and lessen the need for irrigation in areas of the world where water availabilty for agriculture is decreasing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boudsocq, M., Laurière, C., 2005, Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol. 138:1185–1194.

    Article  PubMed  CAS  Google Scholar 

  • Bray, E.A., 1988, Drought- and ABA-induced changes in polypeptide and mRNA accumulation in tomato leaves. Plant Physiol. 88:1210–1214.

    PubMed  CAS  Google Scholar 

  • Bray, E.A., 2001, Plant Response to Water-deficit Stress. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., Chichester. http://www.els.net/ [DOI: 10.1038/npg.els.0001298]

    Google Scholar 

  • Bray, E.A., 2004, Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55:2331–2341.

    Article  PubMed  CAS  Google Scholar 

  • Cai, S.J. and Inouye, M., 2002, EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem. 277:24155–24161.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, A. and Bray, E.A., 1990, Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182:27–33.

    Article  CAS  Google Scholar 

  • Cohen, A., Plant, A.L., Moses, M.S., and Bray, E.A., 1991, Organ-specific and environmentally regulated expression of two abscisic acid induced genes of tomato: Nucleotide sequence and analysis of the corresponding cDNAs. Plant Physiol. 97:1367–1374.

    PubMed  CAS  Google Scholar 

  • Dure, L. III, Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R., Thomas, T., and Sung, Z.R., 1989, Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molec. Biol.12:475–486.

    Article  CAS  Google Scholar 

  • Goyal, K., Walton, L.J., and Tunnacliffe, A., 2005, LEA proteins prevent aggregation due to water stress. Biochem J. 388:151–157.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, Y., Seki, M., Mochizuki, Y., Heida, N., Hirosawa, K., Okamoto, N., Sakurai, T., Satou, M., Akiyama, K., Iida, K., Lee, K., Kanaya, S., Demura, T., Shinozaki, K., Konagaya, A., Toyoda, T., 2006, A flexible representation of omic knowledge for thorough analysis of microarray data. Plant Methods 2:5.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, T.C., 1973, Plant response to water stress. Annu. Rev. Plant Physiol. 24:519–570.

    Article  CAS  Google Scholar 

  • Hyodo, H., Yamakawa, S., Takeda, Y., Tsuduki, M., Yokota, A. Nishitani, K., Kohchi, T., 2003, Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, in inflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Molec. Biol. 52:473–482.

    Article  CAS  Google Scholar 

  • Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K., and Kakimoto, T., 2001, Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063.

    Article  PubMed  CAS  Google Scholar 

  • Jury, W.A., and Vaux Jr., H., 2005, The role of science in solving the world’s emerging water problems. PNAS 102:15715–15720.

    Article  PubMed  CAS  Google Scholar 

  • Kader, J.-C., 1996, Lipid-transfer proteins in plants. Ann. Rev. Plant Physiol. Plant Molec. Biol. 47:627–654.

    Article  CAS  Google Scholar 

  • Kawaguchi, R., Girke, T., Bray, E.A., Bailey-Serres, J.N., 2004, Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J. 38:823–239.

    Google Scholar 

  • Klipp, E., Nordlander, B., Kruger, R., Gennemark, P., and Hohmann, S., 2005, Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23:975–82.

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K., 1994, Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.:identification of three ERDs as HSP cognate genes. Plant Molec. Biol. 25:791–798.

    Article  CAS  Google Scholar 

  • Kreps, J.A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., and Harper, J.F., 2002, Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol. 230:2129–2141.

    Article  CAS  Google Scholar 

  • Plant, A.L., Cohen, A., Moses, M.S., and Bray, E.A., 1991, Nucleotide sequence and spatial expression pattern of a drought- and abscisic acid-induced gene of tomato. Plant Physiol. 97:900–906.

    Article  PubMed  CAS  Google Scholar 

  • Posas. F., and Saito, H., 1997, Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK:scaffold role of Pbs2p MAPKK. Science 276:1702–1705.

    Article  PubMed  CAS  Google Scholar 

  • Racher, K. I., Voegele, R. T., Marshall, E. V., Culham, D. E., Wood, J. M., Jung, H., Bacon, M., Cairns, M. T., Ferguson, S. M., Liang, W.-J., Henderson, P. J. F., White, G., and Hallett, F. R., 1999, Purification and reconstitution of an osmosensor: transporter ProP of Escherichia coli senses and responds to osmotic shifts. Biochem. 38:1676–1684.

    Article  CAS  Google Scholar 

  • Reiser, V., Raitt, D.C., and Saito, H., 2003, Yeast osomosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 161:1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Seki, M., Ishida, J., Narusaka, M., et al. 2002a. Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Int. Gen. 2:282–291.

    Article  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K., 2002b, Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31:279–292.

    Article  CAS  Google Scholar 

  • Singh, S., Cornilescu, C.C., Tyler, R.C., Cornilescu, G., Tonelli, M., Lee, M.S., and Markley, J.L., 2005, Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Prot. Sci. 14:2601–2609.

    Article  CAS  Google Scholar 

  • Tschumperlin, D.J., Dai, G., Maly, I.V., Kikuchi, T., Laiho, L.H., McVittie, A.K., Haley, K.J., Lilly, C.M., So, P.T.C., Lauffenburger, D.A., Kamm, R.D., and Drazen, J.M., 2004, Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429:83–86.

    Article  PubMed  CAS  Google Scholar 

  • Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., and Shinozaki, K., 1999, A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754.

    Article  PubMed  CAS  Google Scholar 

  • Valliyodan, B., and Nguyen, H.T., 2006, Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 9:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Van Ree, R.. 2002, Clinical importance of non-specific lipid transfer proteins as food allergens. Biochem Soc. Trans. 30:910–903.

    Article  PubMed  Google Scholar 

  • Verslues, P.E. and Bray, E.A., 2004, LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis thaliana. Plant Physiol. 136:2831–2842.

    Article  PubMed  CAS  Google Scholar 

  • Verslues, P.E. and Bray, E.A., 2005, Role of abscisic acid acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J. Exp. Bot. 75:201–212.

    Article  CAS  Google Scholar 

  • Wise, M., 2003, LEAping to conclusions:A computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform. 4:52.

    Article  Google Scholar 

  • Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S., and Shinozaki, K., 1992, Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33:217–224.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bray, E.A. (2007). Molecular and Physiological Responses to Water-Deficit Stress. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_6

Download citation

Publish with us

Policies and ethics