Advertisement

THE USE OF MONOCLONAL ANTIBODIES IN PLANT PROTECTION AND FOR STUDYING VIRUS-INDUCED PATHOGENIC PROCESSES

Conference paper
  • 699 Downloads
Part of the NATO Security through Science Series book series

Abstract

Since the development of hybridoma technology (Köhler and Milstein, 1975), monoclonal antibodies (mAbs) produced by the technique of somatic cell hybridization have been widely used in plant virology for diagnostics (e.g. Halk et al., 1982; Hsu et al., 1983; Jordan and Hammond, 1991; D’Arcy et al., 1989; Massalski and Harrison, 1987; Erokhina et al., 1993; Erokhina, 1995), antigenic analysis, and epitope mapping (e.g. Andreeva et al., 1994; Commandeur et al., 1992; Koenig et al., 1990; van den Heuvel et al., 1990; Erokhina et al., 2001; Gorshkova et al., 2003) or subcellular localization of viruses and viral proteins (e.g. Lesemann et al., 1990; Bandla et al., 1994; MacKenzie and Tremaine, 1988; Liu et al., 1999; Erokhina et al., 2001; Yelina et al., 2005).

Keywords

Coat Protein Citrus Tristeza Virus Barley Yellow Dwarf Virus Beet Necrotic Yellow Vein Virus Potato Leaf Roll Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreeva, L., L. Jarvekülg, F. Rabenstein, L. Torrance, B.D. Harrison, and M. Saarma, 1994. Antigenic analysis of potato virus A particles and coat protein, Ann. Appl. Biol., 125, 337–348.Google Scholar
  2. Bandla, M.D., D.M. Westcot, K.D. Chenault, D.E. Ulmann, T.L. German, and J.L. Sherwood, 1994. Use of monoclonal antibody to the nonstructural protein encoded by the small RNA of the tomato spotted wilt tospovirus to identify viruliferous thrips, Phytopathology, 84, 1427–1431.CrossRefGoogle Scholar
  3. Baum, T.J., A. Hiatt, W.A. Parrott, L.H. Pratt, and R.S. Hussey, 1996. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode, Mol. Plant Microbe Interact, 9, 382–387.Google Scholar
  4. Benvenuto, E., R.J. Ordas, R. Tavazza, G. Ancora, S. Biocca, A. Cattaneo, and P. Galeffi, 1991. Phytoantibodies: A general vector for expression of immunoglobulin domains in transgenic plants, Plant Mol. Biol., 17, 865–874.PubMedCrossRefGoogle Scholar
  5. Bird, R.E., K.D. Hardman, J.W. Jacobson, S. Johnson, B.M. Kaufman, S.M. Lee, T. Lee, S.H. Pope, G.S. Riordan, and M. Whitlow, 1988. Single-chain antigen-binding proteins, Science, 242, 423–426.PubMedCrossRefGoogle Scholar
  6. Boonrod, K., D. Galetzka, P.D. Nagy, U. Conrad, and G. Krczal, 2004. Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance, Nature Biotechnol., 22, 856–862.CrossRefGoogle Scholar
  7. Buck, K., 1996. Comparison of the replication of positive-stranded RNA viruses of plants and animals, Adv.Virus Res., 47, 159–251.PubMedGoogle Scholar
  8. Commandeur, U., R. Koenig, D.-E. Lesemann, L. Torrance, W. Burgermeister, Y. Liu, A. Schots, M. Arlic, and G. Grassi, 1992. Epitope mapping on fragments of beet necrotic yellow vein virus coat protein, J. Gen. Virol., 73, 695–700.PubMedGoogle Scholar
  9. Commandeur, U., R. Koenig, R. Manteuffel, L. Torrance, P. Luedecke, and R. Frank, 1994. Location, size, and complexity of epitopes on the coat protein of beet necrotic yellow vein virus studied by means of synthetic overlapping peptides, Virology, 198, 282–287.PubMedCrossRefGoogle Scholar
  10. Conrad, U., and U. Fiedler, 1998. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: An essential tool for antibody production and immunomodulation of physiological functions and pathogen activity, Plant Mol. Biol., 38, 101–109.PubMedCrossRefGoogle Scholar
  11. D’Arcy, C.J., L. Torrance, and R.R. Matrin, 1989. Discrimination among luteoviruses and their strains by monoclonal antibodies and identification of common epitopes, Phytopathology, 79, 869–873.Google Scholar
  12. De Jaeger, G., C. De Wide, D. Eeckhout, E. Fiers, and A. Depicker, 2000. The plantibody approach: Expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance, Plant Mol. Biol., 43, 419–428.PubMedCrossRefGoogle Scholar
  13. De Neve, M., M. De Loose, A. Jacobs, H. Vanhoudt, B. Kaluza, U. Weidle, M. Vanmontagu, and A. Depicker, 1993. Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis, Transgenic Res., 2, 227–237.PubMedCrossRefGoogle Scholar
  14. Düring, K., S. Hippe, F. Kreuzaler, and J. Schell, 1990. Synthesis and selfassembly of a functional monoclonal antibody in transgenic Nicitiana tabacum, Plant Mol. Biol., 15, 281–293.PubMedCrossRefGoogle Scholar
  15. Erhardt, M., G. Vetter, D. Gilmer, K. Bouzoubaa, G. Richards, G. Jonard, and H. Guilley, 2005. Subcellular localization of the triple gene block movement proteins of Beet necrotic yellow vein virus by electron microscopy, Virology, 340, 155–166.PubMedCrossRefGoogle Scholar
  16. Erokhina, T.N., 1995. Monoclonal antibodies to barley yellow dwarf virus: An immuno-enzyme test system for virus diagnostics, Bioorg. Khim. (in Russian), 21, 256–260.Google Scholar
  17. Erokhina, T.N., S.M. Ambrosova, Yu.A. Varitsev, Yu.S. Malofeeva, V.P. Knyazeva, and A.V. Kulyavtsev, 1993. A hybrid immuno-enzyme test system for the potato virus A detection, Bioorg. Khim. (in Russian), 19, 941–949.Google Scholar
  18. Erokhina, T.N., T.B. Kastalieva, and K.A. Mozhaeva, 2002. Preparing of monoclonal antibodies against BYDV using viruses purified from naturally infected plants, Proceedings of International Symposium “Barley Yellow Dwarf Disease: Recent Advances and Future Strategies,” 1–5 Sept., El Batan, Texcoco, Mexico, pp. 101–103.Google Scholar
  19. Erokhina, T.N., R.A. Zinovkin, M.V. Vitushkina, W. Jelkmann, and A.A. Agranovsky, 2000. Detection of beet yellows closterovirus methyltransferase-like and helicase-like proteins in vivo using monoclonal antibodies, J. Gen. Virol., 81, 597–603.PubMedGoogle Scholar
  20. Erokhina, T.N., M.V. Vitushkina, R.A. Zinovkin, D.-E. Lesemann, W. Jelkmann, E.V. Koonin, and A.A. Agranovsky, 2001. Ultrastructural localization and epitope mapping of beet yellows closterovirus methyltransferase-like and helicase-like proteins, J. Gen. Virol., 82, 983–1994.Google Scholar
  21. Esau, K., and L.L. Hoefert, 1971. Cytology of beet yellows virus infection in Tetragonia. I. Parenchyma cells in infected leaf, Protoplasma, 72, 255–273.CrossRefGoogle Scholar
  22. Fecker, L.F., R. Koenig, and C. Obermeier, 1997. Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection, Arch. Virol., 142, 1857–1863.PubMedCrossRefGoogle Scholar
  23. Fisher, R., D. Schumann, S. Zimmermann, J. Drossard, M. Sack, and S. Schillberg, 1999. Expression and characterization of bispecific single chain Fv fragments produced in transgenic plants, Eur. J. Biochem, 262, 810–816.CrossRefGoogle Scholar
  24. Geysen, H.M., S.J. Rodda, T.J. Mason, G. Tribbik, and P.G. Schoofs, 1987. Strategies for epitope analysis using peptide synthesis, J. Immunol. Methods., 102, 259–274.PubMedCrossRefGoogle Scholar
  25. Gorshkova, E.N, T.N. Erokhina, T.A. Stroganova, N.E. Yelina, A.A. Zamyatnin, Jr., N.O. Kalinina, J. Schiemann, A.G. Solovyev, and S.Yu. Morozov, 2003. Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata, J. Gen. Virol., 84, 985–994.PubMedCrossRefGoogle Scholar
  26. Halk, E.L., H.T. Hsu, and J. Aebig, 1982. Properties of virus-specific monoclonal antibodies to Prunus necrotic ringspot, apple mosaic, tobacco streak and alfalfa mosaic viruses, Phytopathology, 72, 953–959.Google Scholar
  27. Hein, M.B., Y. Tang, D.A. McLeod, K.D. Janda, and A. Hiatt, 1991. Evaluation of immunoglobulins from plant cells, Biotechnol. Prog., 7, 455–461.PubMedCrossRefGoogle Scholar
  28. Hiatt, A., R. Cafferkey, and K. Bowdish, 1989. Production of antibodies in transgenic plants, Nature, 342, 76–78.PubMedCrossRefGoogle Scholar
  29. Hsu, H.T., J. Aebig, W.F. Rochow, and R.H. Lawson, 1983. Isolations of hybridomas secreting antibodies reactive to RPV and MAV isolates of Barley yellow dwarf virus and Carnation etched ring virus, Phytopathology, 73, 790.Google Scholar
  30. Jordan, R., and J. Hammond, 1991. Comparison and differentiation of potyvirus isolates and identification of strain-, virus-, subgroup-specific and potyvirus group-common epitopes using monoclonal antibodies, J. Gen. Virol., 72, 25–36.PubMedGoogle Scholar
  31. Koenig, R., U. Commandeur, D.-E. Lesemann, W. Burgermeister, L. Torrance, G. Grassi, M. Arlic, J. Kallerhoff, and A. Schots, 1990. Antigenic analysis of the coat protein of beet nec- rotic yellow vein virus by means of monoclonal antibodies, J. Gen. Virol., 71, 2229–2232.PubMedGoogle Scholar
  32. Köhler, G., and C. Milstein, 1975. Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256, 495–497.PubMedCrossRefGoogle Scholar
  33. Lesemann, D.-E., 1988. Cytopathology, in The Plant Viruses, edited by R.G. Milne, Plenum, New York, pp. 179–235.Google Scholar
  34. Lesemann, D.-E., R. Koenig, L. Torrance, G. Buxton, P.M. Boonekamp, D. Peters, and A. Schots, 1990. Electron microscopical demonstration of different binding sites for monoclonal antibodies on particles of beet necrotic yellow vein virus, J. Gen. Virol., 71, 731–733.Google Scholar
  35. Liu, F., E. Sukhacheva, T. Erokhina, and J. Schubert, 1999. Detection of potyviral nuclear inclusion b proteins by monoclonal antibodies raised to synthetic peptides, Eur. J. Plant. Pathol, 105, 389–395.CrossRefGoogle Scholar
  36. Ma, J.K.-C., A. Hiatt, M. Hein, N.D. Vine, F. Wang, P. Stabila, C. Vandolleweerd, K. Mostov, and T. Lehner, 1995. Generation and assembly of secretory antibodies in plants, Science, 268, 716–719.PubMedCrossRefGoogle Scholar
  37. MacKenzie, D.J., and J.H. Tremaine, 1988. Ultrastructural location of non-structural protein 3A of cucumber mosaic virus in infected tissue using monoclonal antibodies to a cloned chimeric fusion protein, J. Gen. Virol., 69, 2387–2395.Google Scholar
  38. Massalski, P.R., and B.D. Harrison, 1987. Properties of monoclonal antibodies to potato leafroll luteovirus and their use to distinguish virus isolates differing in aphid transmissibility, J. Gen. Virol., 68, 1813–1821.CrossRefGoogle Scholar
  39. Mayo, M.A., and V. Ziegler-Graff, 1996. Molecular biology of luteoviruses, Adv. Virus Res., 46, 413–460.PubMedGoogle Scholar
  40. Owen, M., A. Gandecha, B. Cockburn, and G. Whitelam, 1992. Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco, Biotechnology, 10, 790–794.PubMedCrossRefGoogle Scholar
  41. Peng, C.W., and V.V. Dolja, 2000. Leader proteinase of the beet yellows closterovirus: Mutation analysis of the function in genome amplification, J. Virol., 74, 9766–9770.PubMedCrossRefGoogle Scholar
  42. Peng, C.W., A.J. Napuli, and V.V. Dolja, 2003. Leader proteinase of beet yellows virus functions in long-distance transport, J. Virol., 77, 2843–2849.PubMedCrossRefGoogle Scholar
  43. Schillberg, S., S. Zimmermann, A. Voss, and R. Fisher, 1999. Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum, Transgenic Res., 8, 255–263.PubMedCrossRefGoogle Scholar
  44. Schillberg, S., S. Zimmermann, M.-Y. Zhang, and R. Fisher, 2001. Antibody-based resistance to plant pathogens, Transgenic. Res., 10, 1–12.PubMedCrossRefGoogle Scholar
  45. Schouten, A., J. Roosien, F.A. van Engelen, G.A.M.I. de Jong, A.W.M. BorstVrenssen, J.F. Zilverentant, D. Bosch, W.J. Stiekema, F.J. Gommers, A. Schots, and J. Bakker, 1996. The C-terminal KDEL sequence increases the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco, Plant Mol. Biol., 30, 781–793.PubMedCrossRefGoogle Scholar
  46. Schouten, A., J. Roosien, J.M. de Boer, A. Wilmink, M.N. Rosso, D. Bosch, W.J. Stiekema, F.J. Gommers, J. Bakker, and A. Schots, 1997. Improving scFv antibody expression levels in the plant cytosol, FEBS Lett., 415, 235–241.PubMedCrossRefGoogle Scholar
  47. Tavladoraki, P., E. Benvenuto, S. Trinca, D. De Martinis, A. Cattaneo, and P. Galeffi, 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack, Nature, 366, 469–472.PubMedCrossRefGoogle Scholar
  48. Vaquero, C., M. Sack, J. Chandler, J. Drossard, F. Schuster, M. Monecke, S. Schillberg, and R. Fischer, 1999. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves, Proc. Natl. Acad. Sci. USA, 96, 11128–11133.PubMedCrossRefGoogle Scholar
  49. van den Heuvel, J.F.J.M., C.M. de Blank, R.W. Goldbach, and D. Peters, 1990. A characterization of epitopes on potato leaf roll virus coat protein, Arch. Virol. 115, 185–197.PubMedCrossRefGoogle Scholar
  50. Van Engelen, F.A., A. Schouten, J.W. Molthoff, J. Roosien, J. Salinas, W.G. Dirkse, A. Schots, J. Bakker, F.J. Gommers., M.A. Jongsma, D. Bosch, and W.J. Stiekema, 1994. Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco, Plant Mol. Biol., 26, 1701–1710.PubMedCrossRefGoogle Scholar
  51. van Regenmortel, M.H.V., 1984. Monoclonal antibodies in plant virology, Microbiol. Sci., 1 (3), 73–78.PubMedGoogle Scholar
  52. van Regenmortel, M.H.V., 1990. Plant viruses, in Immunochemistry of Viruses, II. The Basis for Serodiagnosis and Vaccines, edited by M.H.V. van Regenmortel and A.R. Neurath, Elsevier, Amsterdam, pp. 505–515.Google Scholar
  53. van Regenmortel, M.H.V., 1992. Molecular dissection of protein antigens, in Structure of Antigens, edited by M.V.H. van Regenmortel., CRC Press, Boca Baton, pp. 1–29.Google Scholar
  54. Voss, A., M. Niersbach, R. Hain, H.J. Hirsch, Y.C. Liao, F. Kreuzaler, and R. Fischer, 1995. Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody, Mol. Breed., 1, 39–50.CrossRefGoogle Scholar
  55. Yelina, N.E., T.N. Erokhina, N.I. Lukhovitskaya, E.A. Minina, M.V. Schepetinnikov, D.-E. Lesemann, J. Schiemann, A.G. Solovyev, S.Yu. Morozov, 2005. Localization of Poa semilatent virus cysteine-rich protein in peroxisomes is dispensable for the ability to suppress RNA silencing, J. Gen. Virol., 86, 479–489.PubMedCrossRefGoogle Scholar
  56. Zimmermann, S., S. Schillberg, Y.-C. Liao, and R. Fisher, 1998. Intracellular expression of TMV-specific single-chain Fv fragments to improved virus resistance in Nicotiana tabacum, Mol. Breed., 4, 369–379.CrossRefGoogle Scholar
  57. Zinovkin, R.A., T.N. Erokhina, D.-E. Lesemann, W. Jelkmann, and A.A. Agranovsky, 2003. Processing and subcellular localization of the leader papain-like proteinase of Beet yellows closterovirus, J. Gen. Virol., 84, 2265–2270.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

There are no affiliations available

Personalised recommendations