Skip to main content

Assembly of the Bound Iron–Sulfur Clusters in Photosystem I

  • Chapter
Photosystem I

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 24))

Abstract

The first attempts to elucidate the molecular mechanisms that function in the bioassembly of the bound Fe/S clusters in Photosystem I (PS I) are discussed. Fe/S proteins participate in a wide variety of processes, the most important of which in photosynthetic organisms are light-mediated electron transport and stress-induced regulation of genes. One of the last steps in the biogenesis of PS I involves the assembly of the three bound [4Fe–4S] clusters FX, FA, and FB. It has been shown that the proteins encoded by the suf regulon are involved in the assembly and repair of the bound Fe/S clusters in cyanobacteria. The SUF system of Fe/S cluster assembly is localized in the chloroplasts of plants; however, no homologs of the suf genes have been identified in nonphotosynthetic eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Ghany SE, Ye H, Garifullina GF, Zhang L, Pilon-Smits EAH and Pilon M (2005) Iron–sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA. Plant Physiol 138: 161–172

    Article  PubMed  CAS  Google Scholar 

  • Agar JN, Zheng L, Cash VL and Dean DR (2000) Role of the IscU protein in iron–sulfur cluster biosynthesis: IscS-mediated assembly of a [Fe2–S2] cluster in IscU. J Am Chem Soc 122: 2136–2137

    Article  CAS  Google Scholar 

  • Antonkine ML, Bentrop D, Bertini I, Luchinat C, Shen G, Bryant DA, Stehlik D and Golbeck JH (2000) Paramagnetic H1 NMR spectroscopy of the reduced, unbound Photosystem I subunit PsaC: sequence specific assignment of contact-shifted resonances and identification of mixed- and equal-valence Fe–Fe pairs in [4Fe–4S] centers F- A and F- B. J Biol Inorg Chem 5: 381–392

    Article  PubMed  CAS  Google Scholar 

  • Antonkine ML, Liu G, Bentrop D, Bryant DA, Bertini I, Luchinat C, Golbeck JH and Stehlik D (2002) Solution structure of the bound, oxidized photosystem I subunit PsaC, containing [4Fe–4S] clusters FA and FB: a conformational change occurs upon binding to Photosystem I. J Biol Inorg Chem 7: 461–472

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian R, Shen G, Bryant DA and Golbeck, JH (2006) Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 188: 3182–3191

    Article  PubMed  CAS  Google Scholar 

  • Behshad E, Parkin SE and Bollinger JM (2004) Mechanism of cysteine desulfurase Slr0387 from Synechocystis sp. PCC 6803: kinetic analysis of cleavage of the persulfide intermediate by chemical reductants. Biochemistry 43: 12220–12226

    Article  PubMed  CAS  Google Scholar 

  • Beinert H and Kiley PJ (1999) Fe/S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3: 152–157

    Article  PubMed  CAS  Google Scholar 

  • Beinert H, Kennedy CD and Stout CD (1996) Aconitase as iron–sulfur protein, enzyme and iron-regulatory protein. Chem Rev 96: 2335–2373

    Article  PubMed  CAS  Google Scholar 

  • Beinert H, Holm RH and Münck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277: 653–659

    Article  PubMed  CAS  Google Scholar 

  • Bilder PW, Ding H and Newcomer ME (2004) Crystal structure of the ancient, Fe-S scaffold IscA reveals a novel protein fold. Biochemistry 43: 133–139

    PubMed  CAS  Google Scholar 

  • Brettel K and Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507: 100–114

    Article  PubMed  CAS  Google Scholar 

  • Choudens SO, Nachin L, Sanakis Y, Loiseau L, Barras F and Fontecave M (2003) SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron–sulfur cluster assembly. J Biol Chem 278: 17993–18001

    Article  CAS  Google Scholar 

  • Clausen T, Kaiser JT, Steegborn C, Huber R and Kessier D (2000) Crystal structure of the cystine C-S lyase from Synechocystis: stabilization of cysteine persulfide for FeS cluster biosynthesis. Proc Natl Acad Sci USA 97: 3856–3861

    Article  PubMed  CAS  Google Scholar 

  • Cupp-Vickery JR, Urbina H and Vickery LE (2003) Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J Mol Biol 330: 1049–1059

    Article  PubMed  CAS  Google Scholar 

  • Cupp-Vickery JR, Silberg J, Ta DT and Vickery LE (2004a) Crystal structure of IscA, an iron–sulfur cluster assembly protein from Escherichia coli. J Mol Biol 338: 127–137

    Article  CAS  Google Scholar 

  • Cupp-Vickery JR, Peterson JC, Ta DT and Vickery LE (2004b) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J Mol Biol 342: 1265–1278

    Article  CAS  Google Scholar 

  • Dean DR, Bolin JT and Zheng L (1993) Nitrogenase metalloclusters: structures, organization, and synthesis. J Bacteriol 175: 6737–6744

    PubMed  CAS  Google Scholar 

  • Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244

    Article  PubMed  CAS  Google Scholar 

  • Drapier JC (1997) Interplay between NO and [Fe–S] clusters: relevance to biological systems. Methods 11: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Duff JLC, Breton JLJ, Butt JN, Armstrong FA and Thomson AJ (1996) Novel redox chemistry of the [3Fe–4S] clusters: electrochemical characterization of all-Fe(II) form of the [3Fe–4S] cluster generated reversibly in various proteins and its spectroscopic investigation in Sulfolobus acidocaldarius ferredoxin. J Am Chem Soc 118: 8593–8603

    Article  CAS  Google Scholar 

  • Duin EC, Lafferty ME, Crouse BR, Allen RM, Sanyal I, Flint DH and Johnson MK (1997) [2Fe–2S] to [4Fe–4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36: 11811–11820

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O and von Heijne G (2001) Prediction of organellar targeting signals. Biochim Biophys Acta 1541: 114–119

    Article  PubMed  CAS  Google Scholar 

  • Flint DH (1996) Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe/S cluster of dihydroxy-acid dehydratase. J Biol Chem 271: 16068–16074

    PubMed  CAS  Google Scholar 

  • Frazzon J and Dean DR (2002) Biosynthesis of the nitrogenase iron-molybdenum-cofactor from Azotobacter vinelandii. Met Ions Biol Syst 39: 163–186

    PubMed  CAS  Google Scholar 

  • Frazzon J and Dean DR (2003) Formation of iron–sulfur clusters in bacteria: an emerging field in biological chemistry. Curr Opin Chem Biol 7: 166–173

    Article  PubMed  CAS  Google Scholar 

  • Frazzon J, Fick JR and Dean DR (2002) Biosynthesis of iron–sulphur clusters is a complex and highly conserved process. Biochem Soc Trans 30: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Maeda M, Mihara H, Kurihara T, Esaki N and Hata Y (2000) Structure of a NifS homologue: X-ray structure analysis of CsdB, an Escherichia coli counterpart of mammalian selenocysteine lyase. Biochemistry 39: 1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Gaudu P and Weiss B (1996) SoxR, a [2Fe–2S] transcription factor, is active only in its oxidized form. Proc Natl Acad Sci USA 93: 10094–10098

    Article  PubMed  CAS  Google Scholar 

  • Gerber J and Lill R (2002) Biogenesis of iron–sulfur proteins in eukaryotes: components, mechanism and pathology. Mitochondria 2: 71–86

    Article  CAS  Google Scholar 

  • Glockner G, Rosenthal A and Valentin K (2003) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51: 382–390

    Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Golbeck JH (1995) Resolution and reconstitution of Photosystem I. In: Song PS and Horspools WM (eds) CRC Handbook of Organic Photochemistry and Photobiology, pp. 1407–1419. CRC Press, Boca Raton

    Google Scholar 

  • Golbeck JH (1999) A comparative analysis of the spin state distribution of in vivo and in vitro mutants of PsaC. A biochemical argument for the sequence of electron transfer in Photosystem I as FX → FA → FB → ferredoxin/flavodoxin. Photosynth Res 61: 107–149

    Article  CAS  Google Scholar 

  • Goldsmith-Fischman S, Kuzin A, Edstrom WC, Benach J, Shastry R, Xiao R, Acton TB, Honig B, Montelione GT and Hunt JF (2004) The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. J Mol Biol 344: 549–565

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo EH, Ding G and Demple B (1997) Redox signal transduction via iron–sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 22: 207–210

    Article  PubMed  CAS  Google Scholar 

  • Hjorth E, Hadfi K, Zauner S and Maier UG (2005) Unique genetic compartmentalization of the SUF system in cryptophytes and characterization of a SufD mutant in Arabidopsis thaliana. FEBS Lett 579: 1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Hoff KG, Silberg JJ and Vickery LE (2000) Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci USA 97: 7790–7795

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE and Dean DR (1989) Biochemical and genetic analysis of the NifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219: 49–57

    Article  PubMed  CAS  Google Scholar 

  • Johnson MK (1998) Iron–sulfur proteins: new roles for old clusters. Curr Opin Chem Biol 2: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Dean DR, Smith AD and Johnson MK (2005) Structure, function and formation of biological iron–sulfur clusters. Annu Rev Biochem 74: 247–281

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kaiser JT, Clausen T, Bourenkow GP, Bartunik HD, Steinbacher S and Huber R (2000) Crystal structure of a NifS-like protein from Thermotoga maritime: implications for iron sulfur cluster assembly. J Mol Biol 297: 451–464

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Mihara H, Kurihara T, Takahashi Y, Tokumoto U, Yoshimura T and Esaki N (2002) Cys-328 of IscS and Cys-63 of IscU are the sites of disulfite bridge formation in a covalently bound IscS/IscU complex: implications for the mechanism of iron–sulfur cluster assembly. Proc Natl Acad Sci USA 99: 5948–5952

    Article  PubMed  CAS  Google Scholar 

  • Kaut A, Lange H, Diekert K, Kispal G and Lill R (2000) Isa1p is a component of the mitochondrial machinery for maturation of cellular iron–sulfur proteins and requires conserved cysteine residues for function. J Biol Chem 275: 15955–15961

    Article  PubMed  CAS  Google Scholar 

  • Khoroshilova N, Popescu C, Munck E, Beinert H, Kiley PJ (1997) Iron–sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe–4S] to [2Fe–2S] conversion with loss of biological activity. Proc Natl Acad Sci USA 94: 6087–6092

    Article  PubMed  CAS  Google Scholar 

  • Kowallik KV, Stobe B, Schaffran I, Kroth-Pancic P and Freier U (1995) The chloroplast genome of a chlorophyll a + c-containing alga, Odontella sinensis. Plant Mol Biol Rep 13: 336–342

    CAS  Google Scholar 

  • Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH and Johnson MK (2001) IscA, an alternate scaffold for Fe/S cluster biosynthesis. Biochemistry 40: 14069–14080

    Article  PubMed  CAS  Google Scholar 

  • Kushnir S, Babiyachuk E, Storozhenko S, Davey M, Papenbrock J, De Rycke RR, Engler G, Stephan U, Lange H, Kispal G, Lill R and Montagu MV (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant Starik. Plant Cell 13: 89–100

    Article  PubMed  CAS  Google Scholar 

  • Lang T and Kesseler D (1999) Evidence for cystine persulfide as reaction product of l-cyst(e)ine C-S-lyase (C-DES) from Synechocystis. Analysis using cystine analogues and recombinant C-DES. J Biol Chem 274: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Léon S, Touraine B, Briat JF and Lobreaux. S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366: 557–564

    Article  PubMed  Google Scholar 

  • Léon S, Touraine B, Ribot C, Briat JF and Lobreaux S (2003) Iron–sulfur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana. Biochem J 371: 823–830

    Article  PubMed  Google Scholar 

  • Lezhneva L, Amann K and Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe–4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37: 174–185

    PubMed  CAS  Google Scholar 

  • Li H, Theg SM, Bauerle CM and Keegstra K (1990) Metal-ion-center assembly of ferredoxin and plastocyanin in isolated chloroplasts. Pro Natl Acad Sci USA 87: 6748–6752

    Article  CAS  Google Scholar 

  • Lill R and Kispal G (2000) Maturation of cellular Fe/S proteins: the essential function of mitochondria. Trends Biochem Sci 25: 352–356

    Article  PubMed  CAS  Google Scholar 

  • Lill R and Mühlenhoff U (2005) Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30: 133–141

    Article  PubMed  CAS  Google Scholar 

  • Lima CD (2002) Analysis of the E. coli NifS CsdB protein at 2.0 Å reveals the structure basis for perselenide and persulfide intermediate formation. J Mol Biol 315: 1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Loiseau L, Ollagnier-De-Choudens S, Nachin L, Fonteave M and Barras F (2003) Biogenesis of Fe/S cluster by the bacterial Suf system. SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278: 38352–38359

    Article  PubMed  CAS  Google Scholar 

  • Malkin R and Rabinowitz J (1966) The reconstitution of Clostridial ferredoxin. Biochem Biophys Res Commun 23: 822–827

    Article  PubMed  CAS  Google Scholar 

  • Martens EC, Gawronski-salerno J, Vokal DL, Pellitteri MC, Menard ML and Goodrich-Blair H (2003) Xenorhabdus nematophila required an intact iscRSUA-hscBA-fdx operon to colonize Steinernema carpocapsae Nematodes. J Bacteriol 185: 3678–3682

    Article  PubMed  CAS  Google Scholar 

  • Masclaux C and Experts D (1995) Signalling potential of iron in plant microbe interactions: the pathogenic switch of iron transport in Erwinia chrysanthemi. Plant J 7: 121–128

    Article  CAS  Google Scholar 

  • Mehari TK, Parrett G, Warren PV and Golbeck JH (1991) Reconstitution of the iron–sulfur clusters in the isolated FA/FB protein: EPR spectral characterization of same-species and cross-species Photosystem I complexes. Biochim Biophys Acta 1056: 139–148

    Article  CAS  Google Scholar 

  • Mihara H and Esaki N (2002) Bacterial cysteine desulfurase: their function and mechanisms. Appl Microbiol Biotechnol 60: 12–23

    Article  PubMed  CAS  Google Scholar 

  • Mihara K, Maeda M, Fujii T, Kurihara T, Hata Y and Esaki N (1999) A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian slenocysteine lyase. Gene cloning, purification, characterization and preliminary X-ray crystallographic studies. J Biol Chem 274: 14768–14772

    Article  PubMed  CAS  Google Scholar 

  • Mihara H, Kato S-I, Lacouriere GM, Stadtman TC, Kennedy RA, Kurihara T, Tokumoto U, Takahashi Y and Esaki N (2002) The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and selenocysteine-containing formate dehydrogenase H. Proc Natl Acad Sci USA 99: 6679–6683

    Article  PubMed  CAS  Google Scholar 

  • Møller SG, Kunkel T and Chau NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15: 90–103

    Article  PubMed  Google Scholar 

  • Morimoto K, Nishio K and Nakai M (2002) Identification of a novel prokaryotic HEAT-repeats-containing protein which interacts with a cyanobacterial IscA homolog. FEBS Lett 519: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Mühlenhoff U and Lill R (2000) Biogenesis of iron–sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta 1459: 370–382

    Article  PubMed  Google Scholar 

  • Nachin L, Hassouni M, Loiseau L, Expert LD and Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39: 960–972

    Article  PubMed  CAS  Google Scholar 

  • Nachin L, Loiseau L, Expert LD and Barras F (2003) SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe/S] biogenesis under oxidative stress. EMBO J 22: 427–437

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Saeki K and Takahashi Y (1999) Hyperproduction of recombinant ferredoxins in Escherichia coli by coexpression of the ORF1–ORF2–iscS–iscU–iscA–hscB–hscA–fdx--ORF3 gene cluster. J Biochem 126: 10–18

    PubMed  CAS  Google Scholar 

  • Natarajan K and Cowan JA (1997) Identification of a key intermediate of relevance to iron–sulfur cluster biosynthesis. Mechanism of cluster assembly and implication for protein folding. J Am Chem Soc 119: 4082–4083

    Article  CAS  Google Scholar 

  • Nishio K and Nakai M (2000) Transfer of iron–sulfur cluster from NifU to apoprotein. J Biol Chem 275: 22615–22618

    Article  PubMed  CAS  Google Scholar 

  • Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K, Shin-I T, Kohara Y and Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Ollagnier-de-Choudens S, Mattioli T, Takahashi Y and Fontecave M (2001) Iron–sulfur cluster assembly. Characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276: 22604–22607

    Article  PubMed  CAS  Google Scholar 

  • Outten FW, Wood MJ, Munoz FM and Storz G (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe/S cluster assembly in E. coli. J Biol Chem 278: 45713–45719

    Article  PubMed  CAS  Google Scholar 

  • Patzer SI and Hantke K (1999) SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe–2S] FhuF protein in Escherichia coli. J Bacteriol 181: 3307–3309

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EA, Garifullina GF, Abdel-Ghany S, Kato S, Mihara H, Hale KL, Burkhead J, Esaki N, Kurihara T and Pilon M (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130: 1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Pomposiello PJ and Demple B (2001) Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Ramelot TA, Cort JR, Goldsmith-Fischman S, Kornhaber GJ, Xiao R, Shastry R, Acton TB, Honig B, Montelione GT and Kennedy MA (2004) Solution NMR structure of the iron–sulfur cluster assembly protein U (IscU) with zinc bound at the active site. J Mol Biol 344: 567–583

    Article  PubMed  CAS  Google Scholar 

  • Rangachari K, Davis CT, Eccleston JF, Hirst EMA, Saldanha JW, Strath M and Wilson RJM (2002) SufC hydrolyzes ATP and interacts with SufB from Thermotoga maritime. FEBS Lett 514: 225–228

    Article  PubMed  CAS  Google Scholar 

  • Reith ME and Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333–335

    CAS  Google Scholar 

  • Sakuragi Y, Zybailov B, Shen G, Bryant DA, Golbeck JH, Diner BA, Karygina I, Pushkar Y and Stehlik D. (2005) Recruitment of a foreign quinone into the A1 site of Photosystem I. Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone. J. Biol Chem 280: 12371–12381

    Article  PubMed  CAS  Google Scholar 

  • Schilke B, Voisine H and Craig E (1999) Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96: 10206–10211

    Article  PubMed  CAS  Google Scholar 

  • Schubert WD, Klukas O, Krauβ N and Saenger W (1997) Photosystem I of Synechococcus elongatus at 4 Å resolution: comprehensive structure analysis. J Mol Biol 272: 741–769

    Article  PubMed  CAS  Google Scholar 

  • Schürmann P and Buchanan BB (2001) The structure and function of the ferredoxin/thioredoxin system in photosynthesis. In: Aro EM and Andersson B (eds) Regulation of Photosynthesis, pp 331–361. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Schwartz CJ, Djaman O, Imlay JA and Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe/S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 97: 9009–9014

    Article  PubMed  CAS  Google Scholar 

  • Schwartz CJ, Giel JL, Patschkowski T, Luther TC, Ruzicka FJ, Beinert H and Kiley PJ (2001) IscR, an Fe/S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe/S cluster assembly proteins. Proc Natl Acad Sci USA 98: 14895–14900

    Article  PubMed  CAS  Google Scholar 

  • Shen G and Bryant DA (1995) Characterization of a Synechococcus sp. strain PCC 7002 mutant lacking Photosystem I. Protein assembly and energy distribution in the absence of the Photosystem I reaction center core complex. Photosynth Res 44: 41–53

    Article  CAS  Google Scholar 

  • Shen G, Boussiba S and Vermaas WFJ (1993) Synechocystis sp. PCC 6803 strains lacking Photosystem I and phycobilisome function. Plant Cell 5: 1853–1863

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH and Bryant DA (2002a) Assembly of Photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J Biol Chem 277: 20343–20354

    Article  CAS  Google Scholar 

  • Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA and Golbeck JH (2002b) Assembly of Photosystem I. II. Rubredoxin is required for the in vivo assembly of FX in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366

    Article  CAS  Google Scholar 

  • Shen G, Balasubramanian R, Wang T, Tirupati B, Bollinger JM, Golbeck JH and Bryant DA (2004) Functional genomics of genes for the biogenesis of Fe/S proteins in cyanobacteria. In: van der Est R and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, Vol II, pp 882–884. Alliance Communication Group Publisher

    Google Scholar 

  • Silberg JJ, Hoff KG, Tapley TL and Vickery LE (2001) The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. J Biol Chem 276: 1696–1700

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, and Johnson MK (2001) Sulfur transfer from IscS to IscU: the first step in iron–sulfur cluster biosynthesis. J Am Chem Soc 123: 11103–11104

    Article  PubMed  CAS  Google Scholar 

  • Stirewalt VL, Michalowski CB, Löffelhardt W, Bohnert HJ and Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rep 13: 327–332

    CAS  Google Scholar 

  • Stöckel J and Oelmöller R (2004) A novel protein for photosystem I biogenesis. J Biol Chem 279: 10243–10251

    Article  PubMed  Google Scholar 

  • Tachezy J, Sanchez LB and Muller M (2001) Mitochondrial type iron–sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18: 1919–1928

    PubMed  CAS  Google Scholar 

  • Takahashi Y and Nakamura M (1999) Functional assignment of the ORF2–iscR–iscS–iscU–iscA–hscBhscA–fdx–ORF3 gene cluster involved in the assembly of Fe/S clusters in Escherichia coli. J Biochem 126: 917–926

    PubMed  CAS  Google Scholar 

  • Takahashi Y and Tokumoto U (2002) A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277: 28380–38383

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Mitsui A and Matsubara H (1986) Formation of the iron–sulfur cluster of ferredoxin in isolated chloroplasts. Proc Natl Acad Sci USA 83: 2434–2437

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Mitsui A and Matsubara H (1991a) Formation of the iron–sulfur cluster of ferredoxin in lysed spinach chloroplasts. Plant Physiol 95: 97–103

    Article  CAS  Google Scholar 

  • Takahashi Y, Mitsui A, Fujita Y and Matsubara H (1991b) Roles of ATP and NADPH in formation of the Fe/S cluster of spinach ferredoxin. Plant Physiol 95: 104–110

    CAS  Google Scholar 

  • Tirupati B, Vey JL, Drennan CL and Bollinger JM (2004) Kinetics and structural characterization of Slr0077/SufS, the essential cysteine desulfurase from Synechocystis sp. PCC 6803. Biochemistry 43: 12210–12219

    Article  PubMed  CAS  Google Scholar 

  • Tokumoto U and Takahashi Y (2001) Genetic analysis of the isc operon in Escherichia coli involved in the biogenesis of cellular iron–sulfur proteins. J Biochem 130: 63–71

    PubMed  CAS  Google Scholar 

  • Tokumoto U, Nomura S, Minami Y, Mihara H, Kato S, Kurihara T, Esaki N, Kanazawa H, Matsubara H and Takahashi Y (2002) Network of protein–protein interactions among iron–sulfur cluster assembly proteins in Escherichia coli. J Biochem 131: 713–719

    PubMed  CAS  Google Scholar 

  • Touraine B, Boutin JP, Marion-Poll A, Briat JF, Peltier G and Lobreaux S (2004) Nfu2: a scaffold protein required for [4Fe–4S] and ferredoxin iron–sulfur cluster assembly in Arabidopsis chloroplasts. Plant J 40: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Vassiliev IR, Antonkine ML and Golbeck JH (2001) Iron–sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507: 139–160

    Article  PubMed  CAS  Google Scholar 

  • Vickery IE, Silberg JJ and Ta DT (1997) Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci 6: 1047–1056

    PubMed  CAS  Google Scholar 

  • Wang T, Shen G, Balasubramanian R, McIntosh L, Bryant DA and Golbeck JH (2004) The sufR gene (sll0088 in Synechocystis sp. PCC 6803) functions as a repressor of the sufBCDS operon in iron–sulfur cluster biogenesis in cyanobacteria. J Bacteriol 186: 956–967

    Article  PubMed  CAS  Google Scholar 

  • Wastl J, Duin EC, Iuzzolino L, Dörner W, Link T, Hoffmann S, Sticht H, Dau H, Lingelbach K and Maier UG (2000) Eukaryotically encoded and chloroplast-located rubredoxin is associated with photosystem II. J Biol Chem 275: 30058–30063

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kita A and Miki K (2005) Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilius HB8. J Mol Biol 353: 1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM and Andrews J (2001) Gene Bank Accession #AAF81679

    Google Scholar 

  • Wilson RJM, Rangachari K, Saldanha JW, Rickman L, Buxton RS and Eccleston JF (2002) Parasite plastids: maintenance and functions. Phil Trans Res Soc Lond B 358: 155–164

    Article  CAS  Google Scholar 

  • Wollenberg M, Berndt C, Bill E, Schwenn JD and Seidler A (2003) A dimer of the FeS cluster biosynthesis protein IscA from cyanobacterial binds a [2Fe2S] cluster between two protomers and transfer it to [2Fe–2S] and [4Fe–4S] apo proteins. Eur J Biochem 270: 1662–1671

    Article  PubMed  CAS  Google Scholar 

  • Xu X and Møller SG (2004) AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 101: 9143–9148

    Article  PubMed  CAS  Google Scholar 

  • Xu XM, Adams S, Chau NH and Møller SG (2005) AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. J Biol Chem 280: 6648–6654

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Shen G, Wang T, Bryant DA, Golbeck JH and McIntosh L (2003) Suppressor mutations in the study of Photosystem I biogenesis: sll0088 is a previously unidentified gene involved in reaction center accumulation in Synechocystis sp. strain PCC 6803. J Bacteriol 185: 3878–3887

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vassiliev IR, Jung YS, Golbeck JH and McIntosh L (1997) Strains of Synechocystis sp. PCC 6803 with altered PsaC. J Biol Chem 272: 8032–8039

    Article  PubMed  CAS  Google Scholar 

  • Yuvaniyama P, Agar JN, Cash VL, Johnson MK and Dean DR (2000) NifS-directed assembly of a transient [2Fe–2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97: 599–604

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, White RH, Cash VL, Jack RF and Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90: 2754–2758

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Cash, VL, Flint DH and Dean DR (1998) Assembly of iron–sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273: 13264–13272

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Wang X, Temleton LJ, Smulski DR, LaRossa RA and Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183: 4562–4570

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Shen, G., Golbeck, J.H. (2006). Assembly of the Bound Iron–Sulfur Clusters in Photosystem I. In: Golbeck, J.H. (eds) Photosystem I. Advances in Photosynthesis and Respiration, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4256-0_31

Download citation

Publish with us

Policies and ethics