Skip to main content
Log in

Paramagnetic 1H NMR spectroscopy of the reduced, unbound Photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed-and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA and FB

  • Original Article
  • Published:
Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The PsaC subunit of Photosystem I (PS I) is a 9.3-kDa protein that binds two important cofactors in photosynthetic electron transfer: the [4Fe-4S] clusters FA and FB. The g-tensor orientation of FA and FB is believed to be correlated to the preferential localization of the mixed-valence and equal-valence (ferrous) iron pairs in each [4Fe-4S]+ cluster. The preferential position of the mixed-valence and equal-valence pairs, in turn, can be inferred from the study of the temperature dependence of contactshifted resonances by 1H NMR spectroscopy. For this, a sequence-specific assignment of these signals is required. The 1H NMR spectrum of reduced, unbound PsaC from Synechococcus sp. PCC 7002 at 280.4 K in 99% D2O solution shows 18 hyperfine-shifted resonances. The non-solvent-exchangeable, hyperfineshifted resonances of reduced PsaC are clearly identified as belonging to the cysteines coordinating the clusters FA and FB by their downfield chemical shifts, by their temperature dependencies, and by their short T 1 relaxation times. The usual fast method of assigning the 1H NMR spectra of reduced [4Fe-4S] proteins through magnetization transfer from the oxidized to the reduced state was not feasible in the case of reduced PsaC. Therefore, a de novo self-consistent sequence-specific assignment of the hyperfine-shifted resonances was obtained based on dipolar connectivities from 1D NOE difference spectra and on longitudinal relaxation times using the X-ray structure of Clostridium acidi urici 2[4Fe-4S] cluster ferredoxin at 0.94 Å resolution as a model. The results clearly show the same sequence-specific distribution of Curie and anti-Curie cysteines for unbound, reduced PsaC as established for other [4Fe-4S]-containing proteins; therefore, the mixed-valence and equal-valence (ferrous) Fe-Fe pairs in FA and FB have the same preferential positions relative to the protein. The analysis reveals that the magnetic properties of the two [4Fe-4S] clusters are essentially indistinguishable in unbound PsaC, in contrast to the PsaC that is bound as a component of the PS I complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FA and FB :

the two [4Fe-4S] clusters of PsaC in PS I

FX :

interpolypeptide iron-sulfur cluster in PS I

NOE:

nuclear Overhauser effect

PS I:

Photosystem I

References

  1. Golbeck JH (1994) In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 179–220

  2. Mehari T, Parrett KG, Warren PV, Golbeck JH (1991) Biochim Biophys Acta 1056: 139–148

    Article  CAS  Google Scholar 

  3. Li N, Warren P, Golbeck J, Frank G, Zuber H, Bryant D (1991) Biochim Biophys Acta 1059: 215–225

    Article  CAS  PubMed  Google Scholar 

  4. Yu L, Zhao JD, Lu WP, Bryant DA, Golbeck JH (1993) Biochemistry 32: 8251–8258

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J, Li N, Warren P, Golbeck J, Bryant D (1992) Biochemistry 31: 5093–5099

    Article  CAS  PubMed  Google Scholar 

  6. Mehari T, Qiao FY, Scott MP, Nellis DF, Zhao JD, Bryant DA, Golbeck JH (1995) J Biol Chem 270: 28108–28117

    Article  CAS  PubMed  Google Scholar 

  7. Yu L, Bryant DA, Golbeck JH (1995) Biochemistry 34: 7861–7868

    Article  CAS  PubMed  Google Scholar 

  8. Golbeck JH (1999) Photosynth Res 61: 107–144

    Article  CAS  Google Scholar 

  9. Malkin R, Aparicio PJ, Arnon DI (1974) Proc Natl Acad Sci USA 71: 2362–2366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Oh-oka H, Takahashi Y, Matsubara H, Ito S (1988) FEBS Lett 234: 291–294

    Article  Google Scholar 

  11. Oh-oka H, Takahashi Y, Kuriyama K, Saeki K, Matsubara H (1988) J Biochem (Tokyo) 103: 962–968

    CAS  Google Scholar 

  12. Dunn PPJ, Gray JC (1988) Plant Mol Biol 11: 311–319

    Article  CAS  PubMed  Google Scholar 

  13. Krauss N, Schubert WD, Klukas O, Fromme P, Witt HT, Saenger W (1996) Nat Struct Biol 3: 965–973

    Article  CAS  PubMed  Google Scholar 

  14. Kamlowski A, van der Est A, Fromme P, Stehlik D (1997) Biochim Biophys Acta 1319: 185–198

    Article  CAS  Google Scholar 

  15. Kamlowski A, van der Est A, Fromme P, Krauss N, Schubert W D, Klukas O, Stehlik D (1997) Biochim Biophys Acta 1319: 199–213

    Article  CAS  PubMed  Google Scholar 

  16. Klukas O, Schubert WD, Jordan P, Krauss N, Fromme P, Witt HT, Saenger W (1999) J Biol Chem 274: 7351–7360

    Article  CAS  PubMed  Google Scholar 

  17. Banci L, Bertini I, Capozzi F, Carloni P, Ciurli S, Luchinat C, Piccioli M (1991) Inorg Chim Acta 180: 171–175

    Article  CAS  Google Scholar 

  18. Banci L, Bertini I, Capozzi F, Carloni P, Ciurli S, Luchinat C, Piccioli M (1993) J Am Chem Soc 115: 3431–3440

    Article  CAS  Google Scholar 

  19. Banci L, Bertini I, Ciurli S, Ferretti S, Luchinat C, Piccioli M (1993) Biochemistry 32: 9387–9397

    Article  CAS  PubMed  Google Scholar 

  20. Bertini I, Capozzi F, Eltis LD, Felli IC, Luchinat C, Piccioli M (1995) Inorg Chem 34: 2516–2523

    Article  CAS  Google Scholar 

  21. Babini E, Bertini I, Borsari M, Capozzi F, Dikiy A, Eltis LD, Luchinat C (1996) J Am Chem Soc 118: 75–80

    Article  CAS  Google Scholar 

  22. Bertini I, Luchinat C (1996) In: Stiefel EI, Matsumoto K (eds) Transition metal sulfur chemistry: biological industrial significance. (ACS symposium series 653) American Chemical Society, Washington, pp 57–73

  23. Bertini I, Briganti F, Luchinat C, Messori L, Monnanni R, Scozzafava A, Vallini G (1992) Eur J Biochem 204: 831–839

    Article  CAS  PubMed  Google Scholar 

  24. Bertini I, Capozzi F, Luchinat C, Piccioli M, Vila AJ (1994) J Am Chem Soc 116: 651–660

    Article  CAS  Google Scholar 

  25. Donaire A, Gorst CM, Zhou ZH, Adams MWW, La Mar GN (1994) J Am Chem Soc 116: 6841–6849

    Article  CAS  Google Scholar 

  26. Lebrun E, Simenel C, Guerlesquin F, Delepierre M (1996) Magn Reson Chem 34: 873–880

    Article  CAS  Google Scholar 

  27. Bentrop D, Bertini I, Luchinat C, Nitschke W, Mühlenhoff U (1997) Biochemistry 36: 13629–13637

    Article  CAS  PubMed  Google Scholar 

  28. Dauter Z, Wilson KS, Sieker LC, Meyer J, Moulis JM (1997) Biochemistry 36: 16065–16073

    Article  CAS  PubMed  Google Scholar 

  29. Zhao J, Warren PV, Li N, Bryant DA, Golbeck JH (1990) FEBS Lett 276: 175–180

    Article  CAS  PubMed  Google Scholar 

  30. Laemmli UK (1970) Nature 227: 680–685

    Article  CAS  PubMed  Google Scholar 

  31. Inubushi T, Becker ED (1983) J Magn Reson 51: 128–133

    CAS  Google Scholar 

  32. Banci L, Bertini I, Luchinat C, Piccioli M, Scozzafava A, Turano P (1989) Inorg Chem 28: 4650–4656

    Article  CAS  Google Scholar 

  33. Vold RL, Waugh JS, Klein MP, Phelps DE (1968) J Chem Phys 48: 3831–3832

    Article  CAS  Google Scholar 

  34. Wider G, Macura S, Kumar A, Ernst RR, Wüthrich K (1984) J Magn Reson 56: 207–234

    CAS  Google Scholar 

  35. Marion D, Wüthrich K (1983) Biochem Biophys Res Commun 113: 967–974

    Article  CAS  PubMed  Google Scholar 

  36. Aono S, Bertini I, Cowan JA, Luchinat C, Rosato A, Viezzoli MS (1996) JBIC 1: 523–528

    Article  CAS  Google Scholar 

  37. Aono S, Bentrop D, Bertini I, Luchinat C, Macinai R (1997) FEBS Lett 412: 501–505

    Article  CAS  PubMed  Google Scholar 

  38. Bentrop D, Bertini I, Luchinat C, Mendes J, Piccioli M, Teixeira M (1996) Eur J Biochem 236: 92–99

    Article  CAS  PubMed  Google Scholar 

  39. Busse SC, La Mar GN, Howard JB (1991) J Biol Chem 266: 23714–23723

    CAS  PubMed  Google Scholar 

  40. Adman ET, Sieker LC, Jensen LH (1973) J Biol Chem 248: 3987–3996

    CAS  PubMed  Google Scholar 

  41. Adman ET, Sieker LC, Jensen LH (1976) J Biol Chem 251: 3801–3806

    CAS  PubMed  Google Scholar 

  42. Stout CD (1989) J Mol Biol 205: 545–555

    Article  CAS  PubMed  Google Scholar 

  43. Duée ED, Fanchon E, Vicat J, Sieker LC, Meyer J, Moulis J-M (1994) J Mol Biol 243: 683–695

    Article  PubMed  Google Scholar 

  44. Bertini I, Donaire A, Feinberg BA, Luchinat C, Piccioli M, Yuan HP (1995) Eur J Biochem 232: 192–205

    Article  CAS  PubMed  Google Scholar 

  45. Aono S, Bentrop D, Bertini I, Donaire A, Luchinat C, Niikura Y, Rosato A (1998) Biochemistry 37: 9812–9826

    Article  CAS  PubMed  Google Scholar 

  46. Aono S, Bentrop D, Bertini I, Cosenza G, Luchinat C (1998) Eur J Biochem 258: 502–514

    Article  CAS  PubMed  Google Scholar 

  47. Xia B, Westler WM, Cheng H, Meyer J, Moulis J-M, Markley JL (1995) J Am Chem Soc 117: 5347–5350

    Article  CAS  Google Scholar 

  48. Heller R (1994) Diploma Thesis, University of Bayreuth, Germany

    Google Scholar 

  49. Calzolai L, Gorst CM, Bren KL, Zhou Z-H, Adams MWW, La Mar GN (1997) J Am Chem Soc 119: 9341–9350

    Article  Google Scholar 

  50. Le Pape L, Lamotte B, Mouesca J-M, Rius G (1997) J Am Chem Soc 119: 9757–9770

    Article  Google Scholar 

  51. Guigliarelli B, Bertrand P (1999) Adv Inorg Chem 47: 421–497

    Article  CAS  Google Scholar 

  52. Gloux J, Gloux P, Lamotte B, Mouesca JM, Rius G (1994) J Am Chem Soc 116: 1953–1961

    Article  CAS  Google Scholar 

  53. Huber JG, Moulis JM, Gaillard J (1996) Biochemistry 35: 12705–12711

    Article  CAS  PubMed  Google Scholar 

  54. Bertini I, Donaire A, Felli I C, Luchinat C, Rosato A (1997) Inorg Chem 36: 4798–4803

    Article  CAS  PubMed  Google Scholar 

  55. Li N, Zhao J, Warren P, Warden J, Bryant D, Golbeck J (1991) Biochemistry 30: 7863–7872

    Article  CAS  PubMed  Google Scholar 

  56. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22: 4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonkine, M.L., Bentrop, D., Bertini, I. et al. Paramagnetic 1H NMR spectroscopy of the reduced, unbound Photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed-and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA and FB . JBIC 5, 381–392 (2000). https://doi.org/10.1007/PL00010667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010667

Key words

Navigation