Skip to main content

Ocean Carbon Cycle in a Changing Climate: Climate Change Detection

  • Conference paper
The Ocean Carbon Cycle and Climate

Part of the book series: NATO Science Series ((NAIV,volume 40))

Abstract

The atmospheric concentration of CO2 and other greenhouse gases are increasing and changing the radiative properties of the atmosphere. To study the response of the ocean-climate system to this climate perturbation, investigators have integrated ocean-climate models with an atmospheric CO2 concentration that rises over time to double, triple or quadruple the control CO2 level [Bi et al., 2001; Hirst, 1999; Manabe and Stouffer, 1993; Goosse and Renssen, 2001]. The oceanic response in these experiments typically includes widespread surface warming, retreat of sea ice and a general increase in upper ocean stratification, all of which may impact upon the ocean biogeochemistry. The substantial reductions in formation rate and/or density of intermediate and deep water masses that occur in these simulations would likely affect biogeochemical cycling in the ocean and the air-sea exchange of oxygen and CO2. This chapter uses a biogeochemical model to examine the effect of global warming on biogeochemical cycling in the ocean focusing on the oceanic oxygen distribution. The chapter discusses the simulated oxygen changes in the ocean and demonstrates the potential of using oxygen changes to track global warming and provide observations to assess climate model simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of References

  • Aumont, O., J.C. Orr, D. Jamous, P. Monfray, O. Marti, and G. Madec, A degradation approach to accelerate simulations to steady state in a 3-D tracer transport model of the global ocean, Climate Dynamics, 14, 101–116, 1998.

    Article  Google Scholar 

  • Bi, D.H., W.F. Budd, A.C. Hirst, and X.R. Wu, Collapse and reorganisation of the Southern Ocean overturning under global warming in a coupled model, Geophysical Research Letters, 28 (20), 3927–3930, 2001.

    Article  Google Scholar 

  • Bindoff, N.L., and J.A. Church, Warming of the water column in the southwest Pacific Ocean, Nature, 357, 59–62, 1992.

    Article  Google Scholar 

  • Broecker, W., and T.-H. Peng, Tracers in the Sea, 690pp. pp., Columbia University, Palisades, New York, 1982.

    Google Scholar 

  • Broecker, W.S., S.L. Peacock, S. Walker, R. Weiss, E. Fahrbach, M. Schroeder, M. U., C. Heinze, R. Key, T.-H. Peng, and S. Rubin, How much deep water is formed in the Southern Ocean?, Journal of Geophysical Research, 103 (C8), 15,833–15,843, 1998.

    Article  Google Scholar 

  • Conkright, M.E., R.A. Locarnini, H.E. Garcia, T.D. O’Brien, T.P. Boyer, C. Stephens, and J.I. Antonov, World OCEAN ATLAS 2001: Objective Analyses, Data Statistics and Figures, pp. 17, National Oceanographic Data Center„ Silver Spring, MD, 2002.

    Google Scholar 

  • Cox, M.D., A primitive equation, three-dimensional model of the ocean, pp. 141, GFDL Ocean Group Technical Report, GFDL/Princeton University, Princeton N.J., 1984.

    Google Scholar 

  • Doney, S.C., and M.W. Hecht, Antarctic bottom water formation and deep-water chlorofluorocarbon distributions in a global ocean climate model, Journal of Physical Oceanography, 32 (6), 1642–1666, 2002.

    Article  Google Scholar 

  • Dutay, J.-C., J.L. Bullister, S.C. Doney, J.C. Orr, R. Najjar, K. Caldiera, J.-M. Campin, H. Drange, M. Follows, Y. Gao, N. Gruber, M.W. Hecht, A. Ishida, F. Joos, K. Lindsay, G. Madec, E. Maier-Reimer, J.C. Marshall, R.J. Matear, P. Monfray, G.-K. Plattner, J. Sarmiento, R. Schiltzer, R. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka, and A. Yool, Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models, Ocean Modelling, 4 (2), 89–120, 2002.

    Article  Google Scholar 

  • Eppley, R.W., Temperature and phytoplankton growth in the sea, Fish. Bull. U.S., 70, 1063–1085, 1972.

    Google Scholar 

  • Farrell, J.W., T.F. Pedersen, S.E. Calvert, and B. Nielsen, Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean, Nature, 377, 514–517, 1995.

    Article  Google Scholar 

  • Flato, G.M., and W.D. Hibler, On a simple sea-ice dynamics model for climate studies, Ann. Glaciol., 14, 72–77, 1990.

    Google Scholar 

  • Gargett, A.E., Vertical eddy diffusivity in the ocean interior, Journal of Marine Research, 42, 359–393, 1984.

    Article  Google Scholar 

  • Gent, P.R., J. Willebrand, T.J. McDougall, and J.C. McWilliams, Parameterizing EddyInduced Tracer Transports in Ocean Circulation Models, Journal of Physical Oceanography, 25, 463–474, 1995.

    Article  Google Scholar 

  • Gille, S.T., Warming of the Southern Ocean since the 1950s, Science, 295 (5558), 1275–1277, 2002.

    Article  Google Scholar 

  • Goosse, H., and H. Renssen, A two-phase response of the Southern Ocean to an increase in greenhouse gas concentrations, Geophysical Research Letters, 28 (18), 3469–3472, 2001.

    Article  Google Scholar 

  • Gordon, H.B., and S.P. O’Farrell, Transient climate change in the CSIRO coupled model with dynamical sea ice., Mon. Wea. Rev., 125, 875–907, 1997.

    Article  Google Scholar 

  • Hirst, A.C., The Southern Ocean response to global warming in the CSIRO coupled oceanatmosphere model, Environmental Modeling and Software: Special issue on Modelling Global Climate Change, 14, 227–242, 1999.

    Article  Google Scholar 

  • Hirst, A.C., S.P. O’Farrell, and H.B. Gordon, Comparison of a coupled ocean-atmosphere model with and without oceanic eddy-induced advection. Part I: Ocean spinup and control integrations, Journal of Climate, 13, 139–163, 2000.

    Article  Google Scholar 

  • Houghton, J.T., L.G.M. Filho, J. Bruce, H. Lee, B.A. Callander, E. Haites, N. Harris, and K. Maskell, Climate Change 1994, in Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios, pp. 339, Intergovermental Panel on Climate Change, Cambridge University Press, 1995.

    Google Scholar 

  • Levitus, S., M.E. Conkright, J.L. Reid, and R.G. Najjar, Distribution of nitrate, phosphate and silicate in the world oceans, Progress Oceanography, 31, 245–273, 1993.

    Article  Google Scholar 

  • Manabe, S., and R.J. Stouffer, Century-scale effects of increased atmospheric CO2 on the oceanic-atmosphere system, Nature, 364, 215, 1993.

    Article  Google Scholar 

  • Matear, R.J., and A.C. Hirst, Climate Change Feedback on the Future Oceanic CO2 uptake, Tellus, 51B (3), 722–733, 1999.

    Google Scholar 

  • Matear, R.J., A.C. Hirst, and B.I. McNeil, Changes in dissolved oxygen in the Southern Ocean with climate change, http://www.gcubed.magnet.fsu.edu/main.html Geochemistry Geophysics Geosystems(),1 (November 21), 2000.

    Google Scholar 

  • O’Farrell, S.P., Sensitivity study of a dynamical sea-ice model. The effect of the external stresses and land boundary conditions on ice thickenss distribution, Journal of Geophysical Research, 103, 15,751–15,782, 1998.

    Article  Google Scholar 

  • Orsi, A.H., G.C. Johnson, and J.L. Bullister, Circulation, mixing, and production of Antarctic Bottom Water, Progress in Oceanography, 43 (1), 55–109, 1999.

    Article  Google Scholar 

  • Peng, T.-H., and W.S. Broecker, Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and model, Tellus, 39B, 429–458, 1987.

    Article  Google Scholar 

  • Redfield, A., B. Ketchum, and F. Richards, The influence of organisms on the composition of sea water, in The Sea, edited by M. Hill, pp. 26–77, Interscience, New York, 1963.

    Google Scholar 

  • Rintoul, S.R., and J.L. Bullister, A late winter hydrographic section from Tasmania to Antarctica, Deep-Sea Research Part I-Oceanographic Research Papers, 46 (8), 1417–1454, 1999.

    Article  Google Scholar 

  • Rintoul, S.R., and M.H. England, Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water, Journal of Physical Oceanography, 32 (5), 1308–1321, 2002.

    Article  Google Scholar 

  • Roemmich, D., and C. Wunsch, Two transatlantic sections: Meridional circulation and the heat flux in the subtropical North Atlantic Ocean, Deep Sea Research, 32A, 619–664, 1985.

    Article  Google Scholar 

  • Sarmiento, J.L., T.M.C. Hughes, R.J. Stouffer, and S. Manabe, Simulated response of the ocean carbon cycle to anthropogenic climate warming, Nature, 393, 245–249, 1998.

    Article  Google Scholar 

  • Semtner, A.J., A model of thermodynamic growth of sea ice in numerical investigations of climate, Journal of Physical Oceanography, 6, 379–389, 1976.

    Article  Google Scholar 

  • Wang, W., and R.J. Matear, Modeling the upper ocean dynamics in the Subantarctic and Polar Frontal Zones in the Australian sector of the Southern Ocean, Journal of Geophysical Research, 106, 31,511–24, 2001.

    Google Scholar 

  • Wong, A.P.S., N.L. Bindoff, and J.A. Church, Large-scale freshening of intermediate waters in the Pacific and Indian oceans, Nature, 400 (6743), 440–443, 1999.

    Article  Google Scholar 

  • Yamanaka, Y., and E. Tajika, The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using a ocean biogeochemical general circulation model, Global Biogeochemical Cycles, 10, 361–382, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Matear, R.J. (2004). Ocean Carbon Cycle in a Changing Climate: Climate Change Detection. In: Follows, M., Oguz, T. (eds) The Ocean Carbon Cycle and Climate. NATO Science Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2087-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2087-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2086-5

  • Online ISBN: 978-1-4020-2087-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics