Skip to main content

Screening and Characterization of Functional circRNAs in Neuronal Cultures

  • Protocol
  • First Online:
Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2765))

  • 295 Accesses

Abstract

This chapter describes a methodology for the screening and characterization of functional circRNAs, particularly in the context of neural circuit development. Taking advantage of a primary rat neuron culture model of synaptogenesis, we propose a means of selecting from the plethora of circRNA species based on their expression levels, dendritic localization, conservation, and activity regulation. These candidates are then knocked down with RNAi approaches in a functional screen for their potential role in the formation and maturation of excitatory synapses.

Upon identification of top candidates regulating synaptogenesis, we tie together different “Omics” approaches to explore the molecular mechanisms underlying the phenotypes observed upon circRNA knockdown. We utilized our EnrichMir algorithm to identify overrepresented miRNA binding sites in differentially expressed genes from polyA-RNA-seq following circRNA knockdown. Furthermore, our ScanMiR web tool allows for the miRNA binding prediction of reconstructed internal circular RNA sequences. Small-RNA sequencing is used to monitor changes in miRNA levels in the circRNA knockdown to complement results obtained from EnrichMiR. Finally, the experimental validation of promising miRNA–circRNA pairs sets the stage for in-depth biochemical exploration of the circRNA interactome and mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gokool A, Anwar F, Voineagu I (2020) The landscape of circular RNA expression in the human brain. Biol Psychiatry 87(3):294–304

    Article  CAS  PubMed  Google Scholar 

  2. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Google Scholar 

  3. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, Trimbuch T (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357):eaam8526

    Google Scholar 

  4. Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174(2):350–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10(12):842–849

    Article  CAS  PubMed  Google Scholar 

  6. Hollensen AK, Thomsen HS, Lloret-Llinares M, Kamstrup AB, Jensen JM, Luckmann M, Birkmose N, Palmfeldt J, Jensen TH, Hansen TB, Damgaard CK (2020) circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation. elife 9:e58478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Colameo D, Rajman M, Soutschek M, Bicker S, von Ziegler L, Bohacek J, Winterer J, Germain PL, Dieterich C, Schratt G (2021) Pervasive compartment-specific regulation of gene expression during homeostatic synaptic scaling. EMBO Rep 22(10):e52094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, Kadener S, Kristensen LS, Legnini I, Morlando M, Jarlstad Olesen MT (2022) Best practice standards for circular RNA research. Nat Methods 19:1–13

    Article  Google Scholar 

  9. Soutschek M, Germade T, Germain PL, Schratt G (2022) enrichMiR predicts functionally relevant microRNAs based on target collections. Nucleic Acids Res 50:W280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soutschek M, Gross F, Schratt G, Germain PL (2022) scanMiR: a biochemically based toolkit for versatile and efficient microRNA target prediction. Bioinformatics 38(9):2466–2473

    Article  CAS  PubMed  Google Scholar 

  11. Jakobi T, Dieterich C (2018) Deep computational circular RNA analytics from RNA-seq data. In: Circular RNAs. Humana Press, New York, NY, pp 9–25

    Chapter  Google Scholar 

  12. Alexa A, Rahnenfuhrer J (2023) topGO: enrichment analysis for gene ontology (2.52. 0)[Computer software]. Bioconductor version: release (3.17)

    Google Scholar 

  13. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  14. Inouye MO, Colameo D, Ammann I, Winterer J, Schratt G (2022) miR-329–and miR-495–mediated Prr7 down-regulation is required for homeostatic synaptic depression in rat hippocampal neurons. Life Sci Alliance 5(12):e202201520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, Barnes I, Becker A, Bennett R, Berry A, Bhai J, Bhurji SK (2023) Ensembl 2023. Nucleic Acids Res 51(D1):D933–D941

    Article  CAS  PubMed  Google Scholar 

  16. Glažar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu W, Zhao F, Zhang J (2023) circAtlas 3.0: a gateway to 3 million curated vertebrate circular RNAs based on a standardized nomenclature scheme. Nucleic Acids Research, p.gkad770. https://doi.org/10.1093/nar/gkad770

  18. Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32(7):1094–1096

    Article  CAS  PubMed  Google Scholar 

  19. Pamudurti NR, Patop IL, Krishnamoorthy A, Ashwal-Fluss R, Bartok O, Kadener S (2020) An in vivo strategy for knockdown of circular RNAs. Cell Discov 6(1):1–11

    Article  Google Scholar 

  20. Panda AC, Dudekula DB, Abdelmohsen K, Gorospe M (2018) Analysis of circular RNAs using the web tool circinteractome. In: Circular RNAs: methods and protocols, pp 43–56

    Chapter  Google Scholar 

  21. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553

    Article  CAS  PubMed  Google Scholar 

  22. Heumüller AW, Boeckel JN (2018) Characterization and validation of circular RNA and their host gene mRNA expression using PCR. In: Circular RNAs: methods and protocols, pp 57–67

    Chapter  Google Scholar 

  23. Bates D, Machler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  24. Yu F, Zhang Y, Cheng C, Wang W, Zhou Z, Rang W, Yu H, Wei Y, Wu Q, Zhang Y (2020) Poly (A)-seq: a method for direct sequencing and analysis of the transcriptomic poly (A)-tails. PLoS One 15(6):e0234696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brustikova K, Sedlak D, Kubikova J, Skuta C, Solcova K, Malik R, Bartunek P, Svoboda P (2018) Cell-based reporter system for high-throughput screening of MicroRNA pathway inhibitors and its limitations. Front Genet 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pandey PR, Rout PK, Das A, Gorospe M, Panda AC (2019) RPAD (RNase R treatment, polyadenylation, and poly (A)+ RNA depletion) method to isolate highly pure circular RNA. Methods 155:41–48

    Article  CAS  PubMed  Google Scholar 

  27. Pandey PR, Munk R, Kundu G, De S, Abdelmohsen K, Gorospe M (2020) Methods for analysis of circular RNAs. Wiley Interdiscip Rev RNA 11(1):e1566

    Article  CAS  PubMed  Google Scholar 

  28. Rahimi K, Venø MT, Dupont DM, Kjems J (2021) Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat Commun 12(1):1–15

    Article  Google Scholar 

  29. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xin R, Gao Y, Gao Y, Wang R, Kadash-Edmondson KE, Liu B, Wang Y, Lin L, Xing Y (2021) isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat Commun 12(1):1–11

    Article  Google Scholar 

  31. Vromman M, Vandesompele J, Volders PJ (2021) Closing the circle: current state and perspectives of circular RNA databases. Brief Bioinform 22(1):288–297

    Article  CAS  PubMed  Google Scholar 

  32. Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ (2019) Depolarization-associated CircRNA regulate neural gene expression and in some cases may function as templates for translation. Cells 9(1):25.s

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Christoph Dieterich and Tobias Jacobi for their expertise in circRNA reconstruction from RNA-sequencing datasets and for the statistical assessment of differentially expressed circRNAs in neuronal compartments. We thank Michael Soutschek, Tomás Germade, and Pierre-Luc Germain for their essential development and maintenance of the ScanMir and EnrichMir tools. We would also like to thank David Colameo for the development of automated synapse morphology analysis pipelines and Silvia Bicker for the optimization of circRNA targeting by RNAi. Figures were created with BioRender.com.

This work was funded by a PhD fellowship to D.K. from the Swiss National Science Foundation (SNSF), NCCR “RNA and Disease.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schratt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kelly, D., Schratt, G. (2024). Screening and Characterization of Functional circRNAs in Neuronal Cultures. In: Dieterich, C., Baudet, ML. (eds) Circular RNAs. Methods in Molecular Biology, vol 2765. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3678-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3678-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3677-0

  • Online ISBN: 978-1-0716-3678-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics