Skip to main content

Pressurized Liquid Extraction for the Isolation of Bioactive Compounds

  • Chapter
  • First Online:
Bioactive Extraction and Application in Food and Nutraceutical Industries

Abstract

Pressurized liquid extraction (PLE), an advanced extraction technique, employs solvent extraction at elevated temperatures and pressures, consistently under their individual critical points, so the solvent is sustained in the liquid state during the entire extraction process. As a result of utilizing these exact conditions of pressure and temperature, an alteration in the physicochemical properties of the solvent arises. It is an alternative and advanced preparation technique compared to conventional extraction methods in many areas, such as environmental, food, and pharmaceutical analysis. Medicinal plants are the sources of numerous compounds that can tackle numerous diseases when they are used in a reasonable combination. Every single plant contains one or more major bioactive compounds that are responsible for various biomedical functionalities. This chapter summarizes the application of the PLE technique in extraction and phytochemical analysis. The various advantages offered by this technique, such as low solvent usage, less preparation time, high extraction efficiency and better reproducibility, have made it a better alternative for the extraction and analysis of phytoconstituents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carabias-Martínez R, Rodríguez-Gonzalo E, Revilla-Ruiz P, Hernández-Méndez J (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089:1–17

    Article  PubMed  Google Scholar 

  2. Herrero M, Castro-Puyana M, Mendiola JA, Ibañez E (2013) Compressed fluids for the extraction of bioactive compounds. Trends Anal Chem 43:67–83

    Article  CAS  Google Scholar 

  3. Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703:8–18

    Article  CAS  PubMed  Google Scholar 

  4. Plaza M, Turner C (2015) Pressurized hot water extraction of bioactives. Trends Anal Chem 71:39–54

    Article  CAS  Google Scholar 

  5. Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashok Kumar M (2021) Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods 10:2–8

    Article  Google Scholar 

  6. Gilbert-López B, Barranco A, Herrero M, Cifuentes A, Ibáñez E (2017) Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res Int 99:1056–1065

    Article  PubMed  Google Scholar 

  7. Sun H, Ge X, Lv Y, Wang A (2012) Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J Chromatogr A 1237:1–23

    Article  CAS  PubMed  Google Scholar 

  8. Hoff RB, Pizzolato TM (2018) Combining extraction and purification steps in sample preparation for environmental matrices: a review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications. Trends Anal Chem 109:83–96

    Article  CAS  Google Scholar 

  9. Herrero M, Sánchez-Camargo AP, Cifuentes A, Ibáñez E (2015) Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Anal Chem 71:26–38

    Article  CAS  Google Scholar 

  10. Carr AG, Mammucari R, Foster NR (2011) A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem Eng J 172:1–17

    Article  CAS  Google Scholar 

  11. Hawthorne SB, Yang Y, Miller DJ (1994) Extraction of organic pollutants from environmental solids with sub- and supercritical water. Anal Chem 66:2912–2920

    Article  CAS  Google Scholar 

  12. Teo CC, Tan SN, Yong JWH, Hew CS, Ong ES (2010) Pressurized hot water extraction (PHWE). J Chromatogr A 1217:2484–2894

    Article  CAS  PubMed  Google Scholar 

  13. Kronholm J, Hartonen K, Riekkola ML (2007) Analytical extractions with water at elevated temperatures and pressures. TrAC Trends Anal Chem 26:396–412

    Article  CAS  Google Scholar 

  14. Hyotylainen T (2009) Critical evaluation of sample pretreatment techniques. Anal Bioanal Chem 394:743–758

    Article  CAS  PubMed  Google Scholar 

  15. Hawthorne SB, Galy AB, Schmitt VO, Miller DJ (1995) Effect of SFE flow rate on extraction rates: classifying sample extraction behavior. Anal Chem 67:2723–2732

    Article  CAS  Google Scholar 

  16. Hashim YZH, Kerr PG, Abbas P (2016) Aquilaria spp. (agarwood) as source of health beneficial compound: a review of traditional use, phytochemistry and pharmacology. J Ethnopharmacol 189:331–360

    Article  CAS  PubMed  Google Scholar 

  17. Azah N, Chan YS, Mailina J, Abu SA, Majid JA, Saidatul HS, Nor HH, Nik YY (2008) Comparison of chemical profiles of selected gaharu oils from Peninsular Malaysia. Malays J Anal Sci 12:338–340

    Google Scholar 

  18. Subasinghe SMCUP, Hettiarachchi DS (2013) Agarwood resin production and resin quality of Gyrinops walla Gaertn. Int J Agric Sci 3:356–362

    Google Scholar 

  19. Otero P, Quintana SE, Reglero G, Fornari T, García-Risco MR (2018) Pressurized Liquid Extraction (PLE) as an innovative green technology for the effective enrichment of galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Mar Drugs 16:156–162

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mustafa A, Trevino LM, Turner C (2012) Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules 17:1809–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spigno G, Tramelli L, Faveri DMD (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 81:200–208

    Article  CAS  Google Scholar 

  22. Al-Farsi MA, Lee CY (2008) Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 108:977–985

    Article  CAS  PubMed  Google Scholar 

  23. Barkia I, Al-Haj L, Abdul Hamid A, Zakaria M, Saari N, Zadjali F (2019) Indigenous marine diatoms as novel sources of bioactive peptides with antihypertensive and antioxidant properties. Int J Food Sci Technol 54:1514–1522

    Article  CAS  Google Scholar 

  24. Zhao S, Zhang D (2013) A parametric study of supercritical carbon dioxide extraction of oil from Moringa oleifera seeds using response surface methodology. Sep Purif Technol 113:9–17

    Article  CAS  Google Scholar 

  25. Tan MC, Tan CP, Ho CW (2013) Effects of extraction solvent system, time and temperature n total phenolic content of henna (Lawsonia inermis) stems. Int Food Res J 20:3117–3123

    CAS  Google Scholar 

  26. Ahmad R, Ahmad N, Aljamea A, Abuthayn S, Aqeel M (2021) Evaluation of solvent and temperature effect on green accelerated solvent extraction (ASE) and UHPLC quantification of phenolics in fresh olive fruit (Olea europaea). Food Chem 342:12824–12838

    Article  Google Scholar 

  27. Souza MC, Silva LC, Chaves JO, Salvador MP, Sanches VL, da Cunha DT, Foster Carneiro T, Rostagno MA (2021) Simultaneous extraction and separation of compounds from mate (Ilex paraguariensis) leaves by pressurized liquid extraction coupled with solid-phase extraction and in-line UV detection. Food Chem Mol Sci 2:1–11

    Google Scholar 

  28. Chaves JO, Sanches VL, Viganó J, de Souza Mesquita LM, de Souza MC, da Silva LC, Acunha T, Faccioli LH, Rostagno MA (2022) Integration of pressurized liquid extraction and in-line solid-phase extraction to simultaneously extract and concentrate phenolic compounds from lemon peel (Citrus limon L.). Food Res Int 157:111–252

    Article  Google Scholar 

  29. Klejdus B, Plaza M, Šnóblová M, Lojková L (2017) Development of new efficient method for isolation of phenolics from sea algae prior to their rapid resolution liquid chromatographic–tandem mass spectrometric determination. J Pharm Biomed Anal 135:87–96

    Article  CAS  PubMed  Google Scholar 

  30. Viganó J, de Paula Assis BF, Náthia-Neves G, dos Santos P, Meireles MAA, Veggi PC, Martínez J (2020) Extraction of bioactive compounds from defatted passion fruit bagasse (Passiflora edulis sp.) applying pressurized liquids assisted by ultrasound. Ultrason Sonochem 64:104–119

    Article  Google Scholar 

  31. Dias ALB, de Aguiar AC, Rostagno MA (2021) Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: current status and trends. Ultrason Sonochem 74:105–114

    Article  Google Scholar 

  32. Kraujalis P, Kraujaliene V, Kazernavičiūtė R, Venskutonis PR (2017) Supercritical carbon dioxide and pressurized liquid extraction ˙ of valuable ingredients from Viburnum opulus pomace and berries and evaluation of product characteristics. J Supercrit Fluids 122:99–108

    Article  CAS  Google Scholar 

  33. Bobinaite R, Kraujalis P, Tamkut L, Urbonaviˇcien D, Viškelis P, Venskutonis PR (2020) Recovery of bioactive substances from rowanberry pomace by consecutive extraction with supercritical carbon dioxide and pressurized solvents. J Ind Eng Chem 85:152–160

    Article  CAS  Google Scholar 

  34. Viganó J, Zabot GL, Martínez J (2017) Supercritical fluid and pressurized liquid extractions of phytonutrients from passion fruit by-products: economic evaluation of sequential multi-stage and single-stage processes. J Supercrit Fluids 122:88–98

    Article  Google Scholar 

  35. Das S, Nadar SS, Rathod VK (2021) Integrated strategies for enzyme assisted extraction of bioactive molecules: a review. Int J Biol Macromol 191:899–917

    Article  CAS  PubMed  Google Scholar 

  36. Sánchez-Camargo ADP, Montero L, Stiger-Pouvreau V, Tanniou A, Cifuentes A, Herrero M, Ibáñez E (2016) Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem 192:67–74

    Article  PubMed  Google Scholar 

  37. Satapathy AK, Gunasekaran G, Sahoo SC, Amit K, Rodriques PV (2009) Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros Sci 51:2848–2856

    Article  CAS  Google Scholar 

  38. Rodríguez-Meizoso I, Jaime L, Santoyo S, Señoráns F, Cifuentes A, Ibáñez E (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51:456–463

    Article  PubMed  Google Scholar 

  39. Andrich G, Zinnai A, Nesti U, Venturi F (2006) Supercritical fluid extraction of oil from microalga Spirulina (arthrospira) platensis. Acta Aliment 35:195–203

    Article  CAS  Google Scholar 

  40. Canosa P, Perez-Palacios D, Garrido-Lopez A, Tena MT, Rodriguez I, Rubi E (2007) Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust. J Chromatogr A 1161:105–112

    Article  CAS  PubMed  Google Scholar 

  41. Chiaia-Hernandez AC, Keller A, Wächter D, Steinlin C, Camenzuli L, Hollender J (2017) Long-term persistence of pesticides and TPs in archived agricultural soil samples and comparison with pesticide application. Environ Sci Technol 51:10642–10651

    Article  CAS  PubMed  Google Scholar 

  42. Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Zafra-Gómez A (2019) Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 192:508–533

    Article  PubMed  Google Scholar 

  43. Ramirez N, Ozel MZ, Lewis AC, Marcé RM, Borrull F, Hamilton JF (2012) Determination of nicotine and N-nitrosamines in house dust by pressurized liquid extraction and comprehensive gas chromatography–nitrogen chemiluminiscence detection. J Chromatogr A 1219:180–187

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Moral MP, Tena MT (2011) Focused ultrasound solid-liquid extraction and selective pressurised liquid extraction to determine bisphenol a and alkylphenols in sewage sludge by gas chromatography-mass spectrometry. J Sep Sci 34:2513–2522

    Article  CAS  PubMed  Google Scholar 

  45. Rodil R, Moeder M (2008) Development of a simultaneous pressurised-liquid extraction and clean-up procedure for the determination of UV filters in sediments. Anal Chim Acta 612:152–159

    Article  CAS  PubMed  Google Scholar 

  46. Subedi B, Aguilar L, Robinson EM, Hageman KJ, Björklund E, Sheesley RJ (2015) Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. Trends Anal Chem 68:119–132

    Article  CAS  Google Scholar 

  47. Wang N, Su M, Liang S, Sun H (2016) Sensitive residue analysis of quinolones and sulfonamides in aquatic product by capillary zone electrophoresis using large-volume sample stacking with polarity switching combined with accelerated solvent extraction. Food Anal Methods 9:1020–1028

    Article  Google Scholar 

  48. Fontanals N, Pocurul E, Borrull F, Marcé RM (2021) Clean-up techniques in the pressurized liquid extraction of abiotic environmental solid samples. Trends Environ Anal Chem 29:54–59

    Article  Google Scholar 

  49. Khan Z, Kamble N, Bhongale A, Girme M, Bahadur Chauhan V, Banerjee K (2018) Analysis of pesticide residues in tuber crops using pressurised liquid extraction and gas chromatography-tandem mass spectrometry. Food Chem 241:250–257

    Article  CAS  PubMed  Google Scholar 

  50. Chiesa LM, Labella GF, Giorgi A, Panseri S, Pavlovic R, Bonacci S (2016) The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 154:482–490

    Article  CAS  PubMed  Google Scholar 

  51. Kettle A (2014) Recent advancement of pressurized liquid extraction. Chromatography online com 31:10–18

    Google Scholar 

  52. Kostik V (2014) Development and validation of a method for the simultaneous determination of 20 organophosphorus pesticide residues in corn by accelerated solvent extraction and gas chromatography with nitrogen phosphorus detection. Am J Appl Chem 2:46–54

    Article  CAS  Google Scholar 

  53. Feng J, Tang H, Chen D, Dong H, Li L (2013) Accurate determination of pesticide residues incurred in tea by gas chromatography-high resolution isotope dilution mass spectrometry. Anal Methods 5:4196–4204

    Article  CAS  Google Scholar 

  54. Robinson EM, Trumble SJ, Subedi B, Sanders R, Usenko S (2013) Selective pressurized liquid extraction of pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in a whale earplug (earwax): a novel method for analyzing organic contaminants in lipid-rich matrices. J Chromatogr A 1319:14–20

    Article  CAS  PubMed  Google Scholar 

  55. Campone L, Piccinelli AL, Celano R, Russo M, Valdes A, Ibanez C (2015) A fully automated method for simultaneous determination of aflatoxins and ochratoxin a in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-highpressure liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 407:2899–2911

    Article  CAS  PubMed  Google Scholar 

  56. Urraca JL, Marazuela MD, Moreno-Bondi MC (2004) Analysis for zearalenone and α-zearalenol in cereals and swine feed using accelerated solvent extraction and liquid chromatography with fluorescence detection. Anal Chim Acta 524:175–183

    Article  CAS  Google Scholar 

  57. Rico-Yuste A, Gomez-Arribas LN, Perez-Conde MC, Urraca JL, Moreno-Bondi MC (2018) Rapid determination of Alternaria mycotoxins in tomato samples by pressurised liquid extraction coupled to liquid chromatography with fluorescence detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35:2175–2182

    Article  CAS  PubMed  Google Scholar 

  58. Moreda-Piñeiro J, Alonso-Rodríguez E, Moreda-Piñeiro A, Moscoso-Pérez C, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D, Bermejo-Barrera P (2010) Simultaneous pressurized enzymatic hydrolysis extraction and clean up for arsenic speciation in seafood samples before high performance liquid chromatography inductively coupled plasma-mass spectrometry determination. Anal Chim Acta 679:63–73

    Article  PubMed  Google Scholar 

  59. Carballo-Paradelo S, Soto-Ferreiro RM, Carlosena-Zubieta A, Terán-Baamonde J, Andrade-Gardaa JM, Prada-Rodríguezab D (2012) Pressurized liquid extraction to determine Mg, Al, Ti, Cu, Sn and Pb in lubricating oils by inductively coupled plasma mass spectrometry. J Anal At Spectrom 27:1694–1700

    Article  CAS  Google Scholar 

  60. Ballesteros-Vivas D, Álvarez-Rivera G, Sánchez-Camargo ADP, Ibáñez E, Parada-Alfonso F, Cifuentes A (2019) A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to q-TOF mass spectrometry for food by-products revalorization. Part 1: Withanolide-rich extracts from goldenberry (Ph). J Chromatogr A 1584:155–164

    Article  CAS  PubMed  Google Scholar 

  61. Jelić A, Petrović M, Barceló D (2009) Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. Talanta 80:363–371

    Article  PubMed  Google Scholar 

  62. Garcia-Galan MJ, Diaz-Cruz S, Barcelo D (2013) Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography-electrospray-quadrupole linear ion trap mass spectrometry. J Chromatogr A 1275:32–40

    Article  CAS  PubMed  Google Scholar 

  63. Bodoira R, Rossi Y, Montenegro M, Maestri D, Velez A (2017) Extraction of antioxidant polyphenolic compounds from peanut skin using water-ethanol at high pressure and temperature conditions. J Supercrit Fluids 128:57–65

    Article  CAS  Google Scholar 

  64. Tlili I, Caria G, Ouddane B, Ghorbel-Abid I, Ternane R, Trabelsi-Ayadi M (2016) Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an offline SPE combined with on-line SPE-LC-MS/MS: method development and application. Sci Total Environ 563:424–433

    Article  PubMed  Google Scholar 

  65. Jelić A, Petrović M, Barceló D (2009) Multi-residue method for trace level of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. Talanta 80:36–48

    Article  Google Scholar 

  66. Pereira DTV, Tarone AG, Cazarin CBB, Barbero GF, Martínez J (2019) Pressurized liquid extraction of bioactive compounds from grape marc. J Food Eng 240:105–113

    Article  CAS  Google Scholar 

  67. Agregán R, Munekata PE, Domínguez R, Carballo J, Franco D, Lorenzo JM (2017) Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Res Int 99:986–994

    Article  PubMed  Google Scholar 

  68. Feuereisen MM, Gamero Barraza M, Zimmermann BF, Schieber A, Schulze-Kaysers N (2017) Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: a multivariate optimization. Food Chem 214:564–571

    Article  CAS  PubMed  Google Scholar 

  69. Machado APDF, Pereira ALD, Barbero GF, Martínez J (2017) Recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chem 231:1–10

    Article  CAS  PubMed  Google Scholar 

  70. Kitrytė V, Bagdonaitė D, Venskutonis PR (2018) Biorefining of industrial hemp (Cannabis sativa L.) threshing residues into cannabinoid and antioxidant fractions by supercritical carbon dioxide, pres Cicer arietinum surized liquid and enzyme-assisted extractions. Food Chem 267:420–429

    Article  PubMed  Google Scholar 

  71. Zhang Y, He Y, Liu C, Liu C, Li S (2018) In vitro screening and isolation of human aromatase inhibitors from Cicer arietinum by a novel continuous online method combining chromatographic techniques. J Sep Sci 41:483–492

    Article  CAS  PubMed  Google Scholar 

  72. García P, Fredes C, Cea I, Lozano-Sánchez J, Leyva-Jiménez FJ, Robert P, Vergara C, Jimenez P (2021) Recovery of bioactive compounds from pomegranate (Punica granatum L.) peel using pressurized liquid extraction. Foods 10:203–214

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cea Paze I, Lozano-Sánchez J, Borrás-Linares I, Nuñez H, Robert P, Segura-Carretero A (2019) Obtaining an extract rich phenolic compounds from olive pomace by pressurized liquid extraction. Molecules 24:3108–3118

    Article  PubMed  Google Scholar 

  74. Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez J, Alañón ME, Arráez-Román D, Segura-Carretero A (2020) Pressurized GRAS solvents for the green extraction of phenolic compounds from Hibiscus sabdariffa calyces. Food Res Int 137:109–116

    Article  Google Scholar 

  75. Joshi H, Kapoor VP (2003) Cassia grandis Linn. f. seed galactomannan: structural and crystallographical studies. Carbohydr Res 338:1907–1912

    Article  CAS  PubMed  Google Scholar 

  76. Macía Fuentes JA, Fernández IM, Fernández HZ, Sánchez JL, Alemán RS, Navarro-Alarcon M, Borrás-Linares I, Saravia Maldonado SA (2020) Quantification of bioactive molecules, minerals and bromatological analysis in carao (Cassia grandis). J Agric Sci 12:88–94

    Google Scholar 

  77. Nastić N, Borrás-Linares I, Lozano-Sánchez J, Švarc-Gajić J, Segura-Carretero A (2020) Comparative assessment of phytochemical profiles of comfrey (Symphytum officinale L.) root extracts obtained by different extraction techniques. Molecules 25:837–842

    Article  PubMed  PubMed Central  Google Scholar 

  78. Leyva-Jiménez FJ, Lozano-Sánchez J, Borrás-Linares I, Arráez-Román D, Segura-Carretero A (2018) Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Res Int 109:213–222

    Article  PubMed  Google Scholar 

  79. Leyva-Jiménez FJ, Lozano-Sánchez J, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A (2019) Functional ingredients based on nutritional phenolics. A case study against inflammation: Lippia genus. Nutrients 11:1646–1662

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cádiz-Gurrea MDLL, Borrás-Linares I, Lozano-Sánchez J, Joven J, Fernández-Arroyo S, Segura- Carretero A (2017) Cocoa and grape seed by products as a source of antioxidant and anti-inflammatory proanthocyanidins. Int J Mol Sci 18:376–384

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jiménez-Sánchez C, Lozano-Sánchez J, Gabaldón-Hernández JA, Segura-Carretero A, Fernández- Gutiérrez A (2015) RP-HPLCESI-QTOF/MS2 based strategy for the comprehensive metabolite profiling of Sclerocarya birrea (marula) bark. Ind Crop Prod 71:214–234

    Article  Google Scholar 

  82. Kovačević DB, Barba FJ, Granato D, Galanakis CM, Herceg Z, Dragović-Uzelac V, Putnik P (2018) Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem 254:15–26

    Google Scholar 

  83. Montero L, Sedghi M, García Y, Almeida C, Safi C, Engelen-Smit N, Cifuentes A, Mendiola JA, Ibáñez E (2018) Pressurized liquid extraction of pigments from Chlamydomonas sp. and chemical characterization by HPLC–MS/MS. J Anal Test 2:149–157

    Article  Google Scholar 

  84. Castro-Puyana M, Herrero M, Urreta I, Mendiola JA, Cifuentes A, Ibanez E et al (2013) Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 405:4607–4616

    Article  CAS  PubMed  Google Scholar 

  85. Awaluddin SA, Thiruvenkadam S, Izhar S, Hiroyuki Y, Danquah MK, Harun R (2016) Subcritical water technology for enhanced extraction of biochemical compounds from Chlorella vulgaris. Biomed Res Int 23:67–78

    Google Scholar 

  86. Wang L, Lou G, Ma Z, Liu X (2011) Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chem 126:1081–1087

    Article  CAS  Google Scholar 

  87. Sánchez-Camargo ADP, García-Cañas V, Herrero M, Cifuentes A, Ibáñez E (2016) Comparative study of green sub- and supercritical processes to obtain carnosic acid and carnosol-enriched rosemary extracts with in vitro anti-proliferative activity on colon cancer cells. Int J Mol Sci 17:1–18

    Article  Google Scholar 

  88. Castejón N, Luna P, Señoráns FJ (2018) Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents. Food Chem 244:75–82

    Article  PubMed  Google Scholar 

  89. Otero P, López-Martínez MI, García-Risco MR (2019) Application of pressurized liquid extraction (PLE) to obtain bioactive fatty acids and phenols from Laminaria ochroleuca collected in Galicia (NW Spain). J Pharm Biomed Anal 164:86–92

    Article  CAS  PubMed  Google Scholar 

  90. de Medeiros VPB, da Costa WKA, da Silva RT, Pimentel TC, Magnani M (2021) Microalgae as source of functional ingredients in new-generation foods: challenges, technological effects, biological activity, and regulatory issues. Crit Rev Food Sci Nutr 62:4929–4950

    Article  Google Scholar 

  91. Molino A, Martino M, Larocca V, Di Sanzo G, Spagnoletta A, Marino T, Karatza D, Iovine A, Mehariya S, Musmarra D (2019) Eicosapentaenoic acid extraction from Nannochloropsis gaditana using carbon dioxide at supercritical conditions. Mar Drugs 17:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Mello BTF, Iwassa IJ, Cuco RP, dos Santos Garcia VA, da Silva C (2019) Methyl acetate as solvent in pressurized liquid extraction of Crambe seed oil. J Supercrit Fluids 145:66–73

    Article  Google Scholar 

  93. Xu L, Zhan X, Zeng Z, Chen R, Li H, Xie T, Wang S (2011) Recent advances on supercritical fluid extraction of essential oils. Afr J Pharm Pharmacol 5:1196–1211

    Article  CAS  Google Scholar 

  94. Khajenoori M, Asl AH, Bidgoli HN (2013) Subcritical water extraction of essential oils from Matricaria chamomilla L. Int J Eng Trans B Appl 26:489–494

    Google Scholar 

  95. Eikani MH, Golmohammad F, Rowshanzamir S (2007) Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). J Food Eng 80:735–740

    Article  CAS  Google Scholar 

  96. Santos KA, Gonçalves JE, Cardozo-Filho L, da Silva EA (2019) Pressurized liquid and ultrasound-assisted extraction of α -bisabolol from candeia (Eremanthus erythropappus) wood. Ind Crop Prod 130:428–435

    Article  CAS  Google Scholar 

  97. Abuzara SM, Hyun SM, Kim JH, Park HJ, Kim MS, Park JS, Hwang SJ (2018) Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int J Pharm 538:1–13

    Article  Google Scholar 

  98. Soh SH, Lee LY (2019) Microencapsulation and nanoencapsulation using supercritical fluid (SCF) techniques. Pharmaceutics 11:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Barik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barik, R., Sugunan, S., Shafri, M.A.B.M. (2024). Pressurized Liquid Extraction for the Isolation of Bioactive Compounds. In: Sarkar, T., Pati, S. (eds) Bioactive Extraction and Application in Food and Nutraceutical Industries. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3601-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3601-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3600-8

  • Online ISBN: 978-1-0716-3601-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics