Skip to main content

Sleep Oscillations and Psychiatric Disorders

  • Chapter
  • First Online:
Neuronal Oscillations of Wakefulness and Sleep

Abstract

Scalp-recorded EEG oscillations are rhythmic activities within a specific frequency range generated by underlying neuronal populations. In recent years, neuronal oscillations have been shown to be implicated in critical healthy brain functions, including memory, learning, and plasticity. Furthermore, numerous studies have established abnormal neural oscillations in neuropsychiatric conditions, thus suggesting the implication of oscillation-related underlying neuronal circuits in the neurobiology of those disorders. Sleep offers important advantages for investigating dysfunctions of brain circuits in neuropsychiatric patients. Sleep recordings minimize waking-related confounding factors, including fluctuation in attention, reduced cognitive ability, and presence of psychiatric symptoms. Additionally, the two main NREM sleep oscillations, slow waves and spindles, reflect the activity of complementary thalamocortical circuits. In this chapter we will describe the main characteristics of neuronal oscillations, including frequency and topography, with particular emphasis on slow waves and sleep spindles. We will then review the evidence for abnormal sleep oscillations in psychiatric disorders. Finally, we will discuss how these findings inform our current understanding of the neurobiology of brain disorders, and especially major depression and schizophrenia, and how future sleep studies may provide biological “signatures” to inform the diagnosis, prognosis, as well as treatment of psychiatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gore FM, Bloem PJ, Patton GC, Ferguson J, Joseph V, Coffey C, et al. Global burden of disease in young people aged 10-24 years: a systematic analysis. Lancet. 2011;377:2093–102.

    Article  PubMed  Google Scholar 

  2. Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS, et al. Grand challenges in global mental health. Nature. 2011;475:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trede K, Salvatore P, Baethge C, Gerhard A, Maggini C, Baldessarini RJ. Manic-depressive illness: evolution in Kraepelin’s textbook, 1883-1926. Harv Rev Psychiatry. 2005;13:155–78.

    Article  PubMed  Google Scholar 

  4. Fusar-Poli P, Politi P. Paul Eugen Bleuler and the birth of schizophrenia (1908). Am J Psychiatry. 2008;165:1407.

    Article  PubMed  Google Scholar 

  5. Casey BJ, Craddock N, Cuthbert BN, Hyman SE, Lee FS, Ressler KJ. DSM-5 and RDoC: progress in psychiatry research? Nat Rev Neurosci. 2013;14:810–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Insel TR. Translating scientific opportunity into public health impact: a strategic plan for research on mental illness. Arch Gen Psychiatry. 2009;66:128–33.

    Article  PubMed  Google Scholar 

  7. Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242:1654–64.

    Article  CAS  PubMed  Google Scholar 

  8. Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, et al. Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci. 2009;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.

    Article  CAS  PubMed  Google Scholar 

  10. Steriade M. The corticothalamic system in sleep. Front Biosci. 2003;8:d878–99.

    Article  CAS  PubMed  Google Scholar 

  11. He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010;66:353–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steriade M. Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol. 2001;86:1–39.

    Article  CAS  PubMed  Google Scholar 

  13. Sirota A, Csicsvari J, Buhl D, Buzsaki G. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A. 2003;100:2065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jerison HJ. Animal intelligence as encephalization. Philos Trans R Soc Lond Ser B Biol Sci. 1985;308:21–35.

    CAS  Google Scholar 

  15. Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. 2012;14:345–67.

    PubMed  PubMed Central  Google Scholar 

  16. Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, et al. Regional slow waves and spindles in human sleep. Neuron. 2011;70:153–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005;11:357–72.

    Article  PubMed  Google Scholar 

  18. Hari R. Action-perception connection and the cortical mu rhythm. Prog Brain Res. 2006;159:253–60.

    Article  PubMed  Google Scholar 

  19. Niedermeyer E. Alpha rhythms as physiological and abnormal phenomena. Int J Psychophysiol. 1997;26:31–49.

    Article  CAS  PubMed  Google Scholar 

  20. Uhlhaas PJ, Haenschel C, Nikolic D, Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull. 2008;34:927–43.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Penuelas I, Masdeu JC. Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci. 2002;22:10501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosanova M, Casal A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29:7679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci U S A. 2007;104:8496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ngo HV, Martinetz T, Born J, Molle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78:545–53.

    Article  CAS  PubMed  Google Scholar 

  25. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mascetti L, Foret A, Bourdiec AS, Muto V, Kusse C, Jaspar M, et al. Spontaneous neural activity during human non-rapid eye movement sleep. Prog Brain Res. 2011;193:111–8.

    Article  PubMed  Google Scholar 

  27. Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137:1087–106.

    Article  CAS  PubMed  Google Scholar 

  29. Timofeev I, Grenier F, Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A. 2001;98:1924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Massimini M, Amzica F. Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol. 2001;85:1346–50.

    Article  CAS  PubMed  Google Scholar 

  31. Steriade M, Domich L, Oakson G, Deschenes M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol. 1987;57:260–73.

    Article  CAS  PubMed  Google Scholar 

  32. Fuentealba P, Steriade M. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol. 2005;75:125–41.

    Article  CAS  PubMed  Google Scholar 

  33. Golshani P, Liu XB, Jones EG. Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc Natl Acad Sci U S A. 2001;98:4172–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357:1659–73.

    Article  Google Scholar 

  35. Contreras D, Steriade M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci. 1995;15:604–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114–26.

    Article  CAS  PubMed  Google Scholar 

  37. Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci. 2007;11:442–50.

    Article  PubMed  Google Scholar 

  38. Rasch B, Buchel C, Gais S, Born J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science. 2007;315:1426–9.

    Article  CAS  PubMed  Google Scholar 

  39. Tucker MA, Hirota Y, Wamsley EJ, Lau H, Chaklader A, Fishbein W. A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem. 2006;86:241–7.

    Article  PubMed  Google Scholar 

  40. Korman M, Doyon J, Doljansky J, Carrier J, Dagan Y, Karni A. Daytime sleep condenses the time course of motor memory consolidation. Nat Neurosci. 2007;10:1206–13.

    Article  CAS  PubMed  Google Scholar 

  41. Plihal W, Born J. Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci. 1997;9:534–47.

    Article  CAS  PubMed  Google Scholar 

  42. Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3:1237–8.

    Article  CAS  PubMed  Google Scholar 

  43. Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430:78–81.

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Munch M, et al. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci. 2006;26:8976–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.

    Article  CAS  PubMed  Google Scholar 

  46. Antonenko D, Diekelmann S, Olsen C, Born J, Molle M. Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations. Eur J Neurosci. 2013;37:1142–51.

    Article  PubMed  Google Scholar 

  47. Aeschbach D, Cutler AJ, Ronda JM. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci. 2008;28:2766–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Landsness EC, Crupi D, Hulse BK, Peterson MJ, Huber R, Ansari H, et al. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep. 2009;32:1273–84.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, et al. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006;9:1169–76.

    Article  CAS  PubMed  Google Scholar 

  50. Molle M, Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res. 2011;193:93–110.

    Article  PubMed  Google Scholar 

  51. Fogel SM, Smith CT. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev. 2011;35:1154–65.

    Article  PubMed  Google Scholar 

  52. Eschenko O, Molle M, Born J, Sara SJ. Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci. 2006;26:12914–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gais S, Molle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. J Neurosci. 2002;22:6830–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morin A, Doyon J, Dostie V, Barakat M, Hadj Tahar A, Korman M, et al. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep. 2008;31:1149–56.

    PubMed  PubMed Central  Google Scholar 

  55. Schabus M, Gruber G, Parapatics S, Sauter C, Klosch G, Anderer P, et al. Sleep spindles and their significance for declarative memory consolidation. Sleep. 2004;27:1479–85.

    Article  PubMed  Google Scholar 

  56. Clemens Z, Fabo D, Halasz P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience. 2005;132:529–35.

    Article  CAS  PubMed  Google Scholar 

  57. Clemens Z, Fabo D, Halasz P. Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles. Neurosci Lett. 2006;403:52–6.

    Article  CAS  PubMed  Google Scholar 

  58. Nishida M, Walker MP. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One. 2007;2:e341.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tamaki M, Matsuoka T, Nittono H, Hori T. Fast sleep spindle (13–15 Hz) activity correlates with sleep-dependent improvement in visuomotor performance. Sleep. 2008;31:204–11.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Molle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002;22:10941–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Siapas AG, Wilson MA. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron. 1998;21:1123–8.

    Article  CAS  PubMed  Google Scholar 

  62. Wierzynski CM, Lubenov EV, Gu M, Siapas AG. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron. 2009;61:587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Inostroza M, Born J. Sleep for preserving and transforming episodic memory. Annu Rev Neurosci. 2013;36:79–102.

    Article  CAS  PubMed  Google Scholar 

  64. Molle M, Born J. Hippocampus whispering in deep sleep to prefrontal cortex—for good memories? Neuron. 2009;61:496–8.

    Article  PubMed  CAS  Google Scholar 

  65. Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 2003;62:143–50.

    Article  PubMed  Google Scholar 

  66. Hill S, Tononi G, Ghilardi MF. Sleep improves the variability of motor performance. Brain Res Bull. 2008;76:605–11.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Olcese U, Esser SK, Tononi G. Sleep and synaptic renormalization: a computational study. J Neurophysiol. 2010;104:3476–93.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hashmi A, Nere A, Tononi G. Sleep-dependent synaptic down-selection (II): single-neuron level benefits for matching, selectivity, and specificity. Front Neurol. 2013;4:148.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nere A, Hashmi A, Cirelli C, Tononi G. Sleep-dependent synaptic down-selection (I): modeling the benefits of sleep on memory consolidation and integration. Front Neurol. 2013;4:143.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Huber R, Born J. Sleep, synaptic connectivity, and hippocampal memory during early development. Trends Cogn Sci. 2014;18:141–52.

    Article  PubMed  Google Scholar 

  71. Lepola U, Nousiainen U, Puranen M, Riekkinen P, Rimon R. EEG and CT findings in patients with panic disorder. Biol Psychiatry. 1990;28:721–7.

    Article  CAS  PubMed  Google Scholar 

  72. Reynolds CF 3rd, Shaw DH, Newton TF, Coble PA, Kupfer DJ. EEG sleep in outpatients with generalized anxiety: a preliminary comparison with depressed outpatients. Psychiatry Res. 1983;8:81–9.

    Article  PubMed  Google Scholar 

  73. Papadimitriou GN, Kerkhofs M, Kempenaers C, Mendlewicz J. EEG sleep studies in patients with generalized anxiety disorder. Psychiatry Res. 1988;26:183–90.

    Article  CAS  PubMed  Google Scholar 

  74. Feinberg I, Fein G, Walker JM, Price LJ, Floyd TC, March JD. Flurazepam effects on slow-wave sleep: stage 4 suppressed but number of delta waves constant. Science. 1977;198:847–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kobayashi I, Boarts JM, Delahanty DL. Polysomnographically measured sleep abnormalities in PTSD: a meta-analytic review. Psychophysiology. 2007;44:660–9.

    Article  PubMed  Google Scholar 

  76. Germain A. Sleep disturbances as the hallmark of PTSD: where are we now? Am J Psychiatry. 2013;170:372–82.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Feinberg I, Floyd TC, March JD. Acute deprivation of the terminal 3.5 hours of sleep does not increase delta (0-3-Hz) electroencephalograms in recovery sleep. Sleep. 1991;14:316–9.

    Article  CAS  PubMed  Google Scholar 

  78. Neylan TC, Lenoci M, Maglione ML, Rosenlicht NZ, Metzler TJ, Otte C, et al. Delta sleep response to metyrapone in post-traumatic stress disorder. Neuropsychopharmacology. 2003;28:1666–76.

    Article  CAS  PubMed  Google Scholar 

  79. Insel TR, Gillin JC, Moore A, Mendelson WB, Loewenstein RJ, Murphy DL. The sleep of patients with obsessive-compulsive disorder. Arch Gen Psychiatry. 1982;39:1372–7.

    Article  CAS  PubMed  Google Scholar 

  80. Kluge M, Schussler P, Dresler M, Yassouridis A, Steiger A. Sleep onset REM periods in obsessive compulsive disorder. Psychiatry Res. 2007;152:29–35.

    Article  PubMed  Google Scholar 

  81. Robinson D, Walsleben J, Pollack S, Lerner G. Nocturnal polysomnography in obsessive-compulsive disorder. Psychiatry Res. 1998;80:257–63.

    Article  CAS  PubMed  Google Scholar 

  82. Monti JM, Monti D. Sleep disturbance in schizophrenia. Int Rev Psychiatry. 2005;17:247–53.

    Article  PubMed  Google Scholar 

  83. Kahn-Greene ET, Killgore DB, Kamimori GH, Balkin TJ, Killgore WD. The effects of sleep deprivation on symptoms of psychopathology in healthy adults. Sleep Med. 2007;8:215–21.

    Article  PubMed  Google Scholar 

  84. Benson KL. leep in schizophrenia: impairments, correlates, and treatment. Psychiatr Clin North Am. 2006;29:1033–45; abstract ix–x.

    Article  PubMed  Google Scholar 

  85. Miller TJ, Zipursky RB, Perkins D, Addington J, Woods SW, Hawkins KA, et al. The PRIME North America randomized double-blind clinical trial of olanzapine versus placebo in patients at risk of being prodromally symptomatic for psychosis. II. Baseline characteristics of the “prodromal” sample. Schizophr Res. 2003;61:19–30.

    Article  CAS  PubMed  Google Scholar 

  86. Chouinard S, Poulin J, Stip E, Godbout R. Sleep in untreated patients with schizophrenia: a meta-analysis. Schizophr Bull. 2004;30:957–67.

    Article  PubMed  Google Scholar 

  87. Gordon JA, Moore H. Charting a course toward an understanding of schizophrenia. Neuron. 2012;76:465–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Keefe RS. The longitudinal course of cognitive impairment in schizophrenia: an examination of data from premorbid through posttreatment phases of illness. J Clin Psychiatry. 2014;75(Suppl 2):8–13.

    Article  PubMed  Google Scholar 

  89. Yang C, Winkelman JW. Clinical significance of sleep EEG abnormalities in chronic schizophrenia. Schizophr Res. 2006;82:251–60.

    Article  PubMed  Google Scholar 

  90. Poulin J, Daoust AM, Forest G, Stip E, Godbout R. Sleep architecture and its clinical correlates in first episode and neuroleptic-naive patients with schizophrenia. Schizophr Res. 2003;62:147–53.

    Article  PubMed  Google Scholar 

  91. Keshavan MS, Reynolds CF 3rd, Miewald MJ, Montrose DM, Sweeney JA, Vasko RC Jr, et al. Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data. Arch Gen Psychiatry. 1998;55:443–8.

    Article  CAS  PubMed  Google Scholar 

  92. Hiatt JF, Floyd TC, Katz PH, Feinberg I. Further evidence of abnormal non-rapid-eye-movement sleep in schizophrenia. Arch Gen Psychiatry. 1985;42:797–802.

    Article  CAS  PubMed  Google Scholar 

  93. Goder R, Aldenhoff JB, Boigs M, Braun S, Koch J, Fritzer G. Delta power in sleep in relation to neuropsychological performance in healthy subjects and schizophrenia patients. J Neuropsychiatry Clin Neurosci. 2006;18:529–35.

    Article  PubMed  Google Scholar 

  94. Tekell JL, Hoffmann R, Hendrickse W, Greene RW, Rush AJ, Armitage R. High frequency EEG activity during sleep: characteristics in schizophrenia and depression. Clin EEG Neurosci. 2005;36:25–35.

    Article  PubMed  Google Scholar 

  95. Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, et al. Reduced sleep spindle activity in schizophrenia patients. Am J Psychiatry. 2007;164:483–92.

    Article  PubMed  Google Scholar 

  96. Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM, et al. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry. 2010;167:1339–48.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Boutros NN, Mucci A, Vignapiano A, Galderisi S. Electrophysiological aberrations associated with negative symptoms in schizophrenia. Curr Top Behav Neurosci. 2014;21:129–56.

    Article  PubMed  Google Scholar 

  98. Van Cauter E, Linkowsk P, Kerkhofs M, Hubain P, L’Hermite-Baleriaux M, Leclercq R, et al. Circadian and sleep-related endocrine rhythms in schizophrenia. Arch Gen Psychiatry. 1991;48:348–56.

    Article  PubMed  Google Scholar 

  99. Ferrarelli F, Tononi G. The thalamic reticular nucleus and schizophrenia. Schizophr Bull. 2011;37:306–15.

    Article  PubMed  Google Scholar 

  100. Manoach DS, Demanuele C, Wamsley EJ, Vangel M, Montrose DM, Miewald J, et al. Sleep spindle deficits in antipsychotic-naive early course schizophrenia and in non-psychotic first-degree relatives. Front Hum Neurosci. 2014;8:762.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ohayon MM. Prevalence and correlates of nonrestorative sleep complaints. Arch Intern Med. 2005;165:35–41.

    Article  PubMed  Google Scholar 

  102. Ohayon MM, Roth T. Place of chronic insomnia in the course of depressive and anxiety disorders. J Psychiatr Res. 2003;7:9–15.

    Article  Google Scholar 

  103. Benca RM, Obermeyer WH, Thisted RA, Gillin JC. Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatry. 1992;49:651–68; discussion 669–70.

    Article  CAS  PubMed  Google Scholar 

  104. Borbely AA, Tobler I, Loepfe M, Kupfer DJ, Ulrich RF, Grochocinski V, et al. All-night spectral analysis of the sleep EEG in untreated depressives and normal controls. Psychiatry Res. 1984;12:27–33.

    Article  CAS  PubMed  Google Scholar 

  105. Hoffmann R, Hendrickse W, Rush AJ, Armitage R. Slow-wave activity during non-REM sleep in men with schizophrenia and major depressive disorders. Psychiatry Res. 2000;95:215–25.

    Article  CAS  PubMed  Google Scholar 

  106. Schwartz PJ, Rosenthal NE, Wehr TA. Band-specific electroencephalogram and brain cooling abnormalities during NREM sleep in patients with winter depression. Biol Psychiatry. 2001;50:627–32.

    Article  CAS  PubMed  Google Scholar 

  107. Armitage R, Calhoun JS, Rush AJ, Roffwarg HP. Comparison of the delta EEG in the first and second non-REM periods in depressed adults and normal controls. Psychiatry Res. 1992;41:65–72.

    Article  CAS  PubMed  Google Scholar 

  108. Mendelson WB, Sack DA, James SP, Martin JV, Wagner R, Garnett D, et al. Frequency analysis of the sleep EEG in depression. Psychiatry Res. 1987;21:89–94.

    Article  CAS  PubMed  Google Scholar 

  109. Armitage R, Hoffmann R, Trivedi M, Rush AJ. Slow-wave activity in NREM sleep: sex and age effects in depressed outpatients and healthy controls. Psychiatry Res. 2000;95:201–13.

    Article  CAS  PubMed  Google Scholar 

  110. Plante DT, Landsness EC, Peterson MJ, Goldstein MR, Riedner BA, Wanger T, et al. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. BMC Psychiatry. 2012;12:146.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Plante DT, Landsness EC, Peterson MJ, Goldstein MR, Wanger T, Guokas JJ, et al. Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study. Psychiatry Res. 2012;201:240–4.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Duncan WC, Sarasso S, Ferrarelli F, Selter J, Riedner BA, Hejazi NS, et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol. 2013;16:301–11.

    Article  CAS  PubMed  Google Scholar 

  113. Manoach DS. Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives. Front Hum Neurosci. 2014;8:762.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Camchong J, Dyckman KA, Chapman CE, Yanasak NE, McDowell JE. Basal ganglia-thalamocortical circuitry disruptions in schizophrenia during delayed response tasks. Biol Psychiatry. 2006;60:235–41.

    Article  PubMed  Google Scholar 

  115. Ferrarelli F, Massimini M, Peterson MJ, Riedner BA, Lazar M, Murphy MJ, et al. Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatry. 2008;165:996–1005.

    Article  PubMed  Google Scholar 

  116. Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE Jr, Jones EG. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry. 1996;53:425–36.

    Article  CAS  PubMed  Google Scholar 

  117. Zikopoulos B, Barbas H. Circuits for multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Rev Neurosci. 2007;18:417–38.

    Article  PubMed  PubMed Central  Google Scholar 

  118. McAlonan K, Cavanaugh J, Wurtz RH. Guarding the gateway to cortex with attention in visual thalamus. Nature. 2008;456:391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Krause M, Hoffmann WE, Hajos M. Auditory sensory gating in hippocampus and reticular thalamic neurons in anesthetized rats. Biol Psychiatry. 2003;53:244–53.

    Article  PubMed  Google Scholar 

  120. Freedman R, Ross R, Leonard S, Myles-Worsley M, Adams CE, Waldo M, et al. Early biomarkers of psychosis. Dialogues Clin Neurosci. 2005;7:17–29.

    PubMed  PubMed Central  Google Scholar 

  121. Tregellas JR, Davalos DB, Rojas DC, Waldo MC, Gibson L, Wylie K, et al. Increased hemodynamic response in the hippocampus, thalamus and prefrontal cortex during abnormal sensory gating in schizophrenia. Schizophr Res. 2007;92:262–72.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sherman SM, Guillery RW. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357:1695–708.

    Article  Google Scholar 

  123. Buchmann A, Dentico D, Peterson MJ, Riedner BA, Sarasso S, Massimini M, et al. Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia. NeuroImage. 2014;102(Pt 2):540–7.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Nakamura M, Uchida S, Maehara T, Kawai K, Hirai N, Nakabayashi T, et al. Sleep spindles in human prefrontal cortex: an electrocorticographic study. Neurosci Res. 2003;45:419–27.

    Article  PubMed  Google Scholar 

  125. Ramcharan EJ, Gnadt JW, Sherman SM. Higher-order thalamic relays burst more than first-order relays. Proc Natl Acad Sci U S A. 2005;102:12236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wei H, Bonjean M, Petry HM, Sejnowski TJ, Bickford ME. Thalamic burst firing propensity: a comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew. J Neurosci. 2011;31:17287–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Astori S, Wimmer RD, Luthi A. Manipulating sleep spindles—expanding views on sleep, memory, and disease. Trends Neurosci. 2013;36:738–48.

    Article  CAS  PubMed  Google Scholar 

  128. Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329–48.

    Article  CAS  PubMed  Google Scholar 

  129. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss D. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 1999;19:1895–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Crandall SR, Govindaiah G, Cox CL. Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci. 2010;30:15419–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, et al. The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A. 2011;108:13823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. International Stroke Genetics Consortium (ISGC), Wellcome Trust Case Control Consortium 2 (WTCCC2), Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, et al. Genome-wide association study identifies a variant in HDAC9 associated withy large vessel ischemic stroke. Nat Genet. 2012;44:328–33.

    Article  CAS  Google Scholar 

  133. Pangratz-Fuehrer S, Rudolph U, Huguenard JR. Giant spontaneous depolarizing potentials in the developing thalamic reticular nucleus. J Neurophysiol. 2007;97:2364–72.

    Article  CAS  PubMed  Google Scholar 

  134. Reynolds GP, Harte MK. The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans. 2007;35:433–6.

    Article  CAS  PubMed  Google Scholar 

  135. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24.

    Article  CAS  PubMed  Google Scholar 

  136. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Moller B, Fountain SI, Chen R. Increased cortical inhibition in persons with schizophrenia treated with clozapine. J Psychopharmacol. 2008;22:203–9.

    Article  CAS  PubMed  Google Scholar 

  137. Pakkenberg B, Scheel-Kruger J, Kristiansen LV. Schizophrenia; from structure to function with special focus on the mediodorsal thalamic prefrontal loop. Acta Psychiatr Scand. 2009;120:345–54.

    Article  CAS  PubMed  Google Scholar 

  138. Santana N, Troyano-Rodriguez E, Mengod G, Celada P, Artigas F. Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry. 2011;69:918–27.

    Article  CAS  PubMed  Google Scholar 

  139. Jardemark K, Marcus MM, Shahid M, Svensson TH. Effects of asenapine on prefrontal N-methyl-D-aspartate receptor-mediated transmission: involvement of dopamine D1 receptors. Synapse. 2010;64:870–4.

    Article  CAS  PubMed  Google Scholar 

  140. Zhang Y, Llinas RR, Lisman JE. Inhibition of NMDARs in the nucleus reticularis of the thalamus produces delta frequency bursting. Front Neural Circ. 2009;3:20.

    Google Scholar 

  141. Dawson N, Morris BJ, Pratt JA. Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems. Schizophr Bull. 2013;39:366–77.

    Article  PubMed  Google Scholar 

  142. Esser SK, Hill S, Tononi G. Sleep homeostasis and cortical synchronization: I. modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30:1617–30.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep. 2007;30:1631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci. 2008;11:200–8.

    Article  CAS  PubMed  Google Scholar 

  145. Duncan WC Jr, Zarate CA Jr. Ketamine, sleep, and depression: current status and new questions. Curr Psychiatry Rep. 2013;15:394.

    Article  PubMed  Google Scholar 

  146. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci. 2008;28:4088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Huber R, Tononi G, Cirelli C. Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep. 2007;30:129–39.

    Article  PubMed  Google Scholar 

  149. Bachmann V, Klein C, Bodenmann S, Schafer N, Berger W, Brugger P, et al. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep. 2012;35:335–44.

    PubMed  PubMed Central  Google Scholar 

  150. Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N, et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry. 2012;72:e27–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology. 2012;62:35–41.

    Article  CAS  PubMed  Google Scholar 

  152. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology. 2013;38:2268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology. 2001;40:1028–33.

    Article  CAS  PubMed  Google Scholar 

  155. O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES. AMPA receptor potentiators for the treatment of CNS disorders. CNS Neurol Disord. 2004;3:181–94.

    Article  Google Scholar 

  156. Akinfiresoye L, Tizabi Y. Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology. 2013;230:291–8.

    Article  CAS  PubMed  Google Scholar 

  157. Borbely AA, Wirz-Justice A. Sleep, sleep deprivation and depression. A hypothesis derived from a model of sleep regulation. Hum Neurobiol. 1982;1:205–10.

    CAS  PubMed  Google Scholar 

  158. Duncan WC Jr, Selter J, Brutsche N, Sarasso S, Zarate CA Jr. Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder. J Affect Disord. 2013;145:115–9.

    Article  CAS  PubMed  Google Scholar 

  159. Wamsley EJ, Shinn AK, Tucker MA, Ono KE, McKinley SK, Ely AV, et al. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial. Sleep. 2013;36:1369–76.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Ferrarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrarelli, F., Tononi, G. (2020). Sleep Oscillations and Psychiatric Disorders. In: Dang-Vu, T., Courtemanche, R. (eds) Neuronal Oscillations of Wakefulness and Sleep. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0653-7_9

Download citation

Publish with us

Policies and ethics