Skip to main content

Part of the book series: Communications and Control Engineering ((CCE))

  • 1616 Accesses

Abstract

In this chapter all the results of the previous chapters are generalized to include system failures as well as model uncertainties. It is shown the DSC is a passive fault tolerant approach in that it gives robust stability and tracking in the presence of model uncertainties and specific classes of faults. Then, based on the amount of performance loss measured by a quadratic Lyapunov function and information from a fault detection and diagnosis (FDD) system, a fault classification system is developed. The technique is illustrated in the example of vehicle longitudinal controlled designed for an automated highway system (AHS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes. Prentice Hall, New York (1993)

    Google Scholar 

  2. Bow, S.-T.: Pattern Recognition and Image Preprocessing. Dekker, New York (1992)

    Google Scholar 

  3. Cho, D., Hedrick, J.K.: Automotive power modeling for control. J. Dyn. Syst. Meas. Control 111, 568–576 (1989)

    Article  Google Scholar 

  4. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica 26(3), 459–474 (1990)

    Article  MATH  Google Scholar 

  5. Frank, P.M., Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997)

    Article  Google Scholar 

  6. Gerdes, J.C.: Decoupled design of robust controllers for nonlinear systems: As motivated by and applied to coordinated throttle and brake control for automated highways. Ph.D. thesis, U.C. Berkeley, March 1996

    Google Scholar 

  7. Gertler, J.J.: Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst. Mag. 8(6), 3–11 (1988)

    Article  Google Scholar 

  8. Hedrick, J.K., Yip, P.P.: Multiple sliding surface control: theory and application. J. Dyn. Syst. Meas. Control 122, 586–593 (2000)

    Article  Google Scholar 

  9. Isermann, R.: Process fault detection based on modeling and estimation methods—a survey. Automatica 20(4), 387–404 (1984)

    Article  MATH  Google Scholar 

  10. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control 43(4), 555–559 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krstić, M., Kanellakopoulous, I., Kokotović, V.P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  12. Lygeros, J., Godbole, D., Brouche, M.: A fault tolerant control architecture for automated highway systems. IEEE Trans. Control Syst. Technol. 8(2), 205–219 (2000)

    Article  Google Scholar 

  13. Maciuca, D.B.: Nonlinear robust and adaptive control with application to brake control for automated highway systems. Ph.D. thesis, University of California at Berkeley (1997)

    Google Scholar 

  14. Noura, H., Fonte, C., Robert, M.: Fault tolerant control using simultaneous stabilization. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, New York, NY, vol. 3, pp. 605–610 (1993)

    Google Scholar 

  15. Noura, H., Sauter, D., Hamelin, F., Theilliol, D.: Fault-tolerant control in dynamic systems: application to a winding machine. IEEE Control Syst. Mag. 20(1), 33–49 (2000)

    Article  Google Scholar 

  16. Song, B., Hedrick, J.K., Howell, A.: Fault tolerant control and classification for longitudinal vehicle control. J. Dyn. Syst. Meas. Control 125, 320–329 (2003)

    Article  Google Scholar 

  17. Spooner, J., Passino, K.: Fault-tolerant control for automated highway systems. IEEE Trans. Veh. Technol. 46(3), 770–785 (1997)

    Article  Google Scholar 

  18. Therrien, C.: Decision, Estimation, and Classification. Wiley, New York (1989)

    MATH  Google Scholar 

  19. Vidyasagar, M.: Control System Synthesis: A Factorization Approach. The MIT Press Series in Signal Processing, Optimization, and Control, vol. 7. MIT Press, Cambridge (1985)

    MATH  Google Scholar 

  20. Willsky, A.S.: A survey of design methods for failure detection in dynamic systems. Automatica 12(6), 601–611 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yip, P.P., Hedrick, J.K.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959–979 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Y., Jiang, J.: Integrated design of reconfigurable fault-tolerant control systems. J. Guid. Control Dyn. 24(1), 133–136 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongsob Song .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Song, B., Hedrick, J.K. (2011). Automated Vehicle Control. In: Dynamic Surface Control of Uncertain Nonlinear Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-632-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-632-0_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-631-3

  • Online ISBN: 978-0-85729-632-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics