Skip to main content

Indentation Size Effect and Strain Rate Sensitivity of Nanocrystalline MG–AL Alloys

  • Conference paper
  • First Online:
Engineering Asset Management and Infrastructure Sustainability
  • 3449 Accesses

Abstract

Deformation behaviour of microcrystalline and nanocrystalline (nc) Mg-5%Al alloys were investigated using instrumented indentation tests. The hardness values exhibited significant indentation size effect (ISE), with nc alloys showing weaker ISE. Relative higher strain rate sensitivity and inverse Hall–Petch relationship were observed in the nc alloys. This is attributed to highly localized dislocation activities and relative smaller activation volume, as compared to their mc counterparts. It is believed there is an increasing role of grain boundaries in plastic deformation mechanisms with decreasing the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  2. Suryanarayana C, Koch CC (2000) Nanocrystalline materials-current research and future directions. Hyperfine Interact 130(1–4):5–44

    Article  Google Scholar 

  3. Wei Q (2007) Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J Mater Sci 42(5):1709–1727

    Article  Google Scholar 

  4. Jiang Z, Liu X, Li G, Jiang Q, Lian J (2006) Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl Phys Lett 88(14):143113–143115

    Article  Google Scholar 

  5. Trojanova Z, Lukac P, Szaraz Z (2005) Deformation behaviour of nanocrystalline Mg studied at elevated temperatures. Rev Adv Mater Sci 10(5):437–441

    Google Scholar 

  6. Chen J, Lu L, Lu K (2006) Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Mater 54(11):1913–1918

    Article  Google Scholar 

  7. Dalla Torre FH, Pereloma EV, Davies CHJ (2006) Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes. Acta Mater 54(4):1135–1146

    Article  Google Scholar 

  8. Gu C, Lian J, Jiang Z, Jiang Q (2006) Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scripta Mater 54(4):579–584

    Article  Google Scholar 

  9. Pan D, Nieh TG, Chen MW (2006) Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl Phys Lett 88(16):161922–161923

    Article  Google Scholar 

  10. May J, Hoppel HW, Goken M (2005) Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Mater 53:189–194

    Article  Google Scholar 

  11. Miyamoto H, Ota K, Mimaki T (2006) Viscous nature of deformation of ultra-fine grain aluminum processed by equal-channel angular pressing. Scripta Mater 54(10):1721–1725

    Article  Google Scholar 

  12. Wei Q, Kecskes L, Jiao T, Hartwig KT, Ramesh KT, Ma E (2004) Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation. Acta Mater 52(7):1859–1869

    Article  Google Scholar 

  13. Jang D, Atzmon M (2003) Grain-size dependence of plastic deformation in nanocrystalline Fe. J Appl Phys 93:9282–9286

    Article  Google Scholar 

  14. Jang D, Atzmon M (2006) Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J Appl Phys 99:83501–83504

    Article  Google Scholar 

  15. Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykhanov VU, Valiev RZ (2005) Plastic flow localization in bulk tungsten with ultrafine microstructure. Appl Phys Lett 86:101901–101907

    Article  Google Scholar 

  16. Wei Q, Zhang HT, Schuster BE, Ramesh KT, Valiev RZ, Kecskes LJ, Dowding RJ, Magness L, Cho K (2006) Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Mater 54:4079–4089

    Article  Google Scholar 

  17. May J, Hoppel HW, Goken M (2006) Strain rate sensitivity of ultrafine grained fcc- and bcc-type metals. Mater Sci Forum 503–504:781–786

    Article  Google Scholar 

  18. Xiaodong L, Xinnan W, Qihua X, Eklund PC (2005) Mechanical properties of ZnS nanobelts. Nano Lett 5:1982–1986

    Article  Google Scholar 

  19. Bao L, Xu Z-H, Li R, Li X (2010) Catalyst-free synthesis and structural and mechanical characterization of single crystalline Ca2B2O5·H2O nanobelts and stacking faulted Ca2B2O5 nanogrooves. Nano Lett 10:255–262

    Article  Google Scholar 

  20. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  MATH  Google Scholar 

  21. Huang Y, Zhang F, Hwang KC, Nix WD, Pharr GM, Feng G (2006) A model of size effects in nano-indentation. J Mech Phys Solids 54(8):1668–1686

    Article  MATH  Google Scholar 

  22. Cavaliere P (2008) Strain rate sensitivity of ultra-fine and nanocrystaline metals and alloys. Physica B: Condens Matter 403(4):569–575

    Article  Google Scholar 

  23. Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55(12):4041–4065

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this paper

Cite this paper

Diao, H., Yan, C., Bell, J., Lu, L., Zhang, G. (2012). Indentation Size Effect and Strain Rate Sensitivity of Nanocrystalline MG–AL Alloys. In: Mathew, J., Ma, L., Tan, A., Weijnen, M., Lee, J. (eds) Engineering Asset Management and Infrastructure Sustainability. Springer, London. https://doi.org/10.1007/978-0-85729-493-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-493-7_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-301-5

  • Online ISBN: 978-0-85729-493-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics