Skip to main content

General Aspects of Modeling Tumor Growth and Immune Response

  • Chapter
A Survey of Models for Tumor-Immune System Dynamics

Abstract

This chapter opens with a summary of the philosophy and methodology of mathematical modeling (Sections 2.1 and 2.2). In Section 2.3 a survey of deterministic diffusion models of spheroid growth is provided. Section 2.4 addresses a particular type of model, based on a predator-prey description of the immune response to cancer illustrating the modeling pro- cess in some detail. This is followed in Section 2.5 by a spatially-dependent approach to the immune response in a one-dimensional system. Section 2.6 is more speculative in nature: the suggestion is made that the concepts of “tunneling” (as used in quantum mechanics) and “catastrophe” may be applicable to both the development of cancer and the effectiveness of the immune response. Two appendices follow on (i) catastrophe theory and (ii) certain mathematical properties of solutions to diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam J.A., A simplified mathematical model of tumor growth, Math. Biosci., 81 (1986), 229–244.

    Article  MATH  Google Scholar 

  2. Adam J.A., A mathematical model of tumor growth: II. Effects of geometry and spatial non-uniformity on stability, Math. Biosci., 86 (1987), 183–211.

    Article  MATH  Google Scholar 

  3. Adam J.A., A mathematical model of tumor growth: III. Comparison with experiment, Math. Biosci., 86 (1987), 213–227.

    Article  MATH  Google Scholar 

  4. Adam J.A. and Maggelakis S.A., Diffusion regulated growth characteristics of a prevascular carcinoma, Bull. Math. Biol., 52 (1990), 549–582.

    MATH  Google Scholar 

  5. Adam J.A., On complementary levels of description in applied mathematics. II. Mathematical models in cancer biology, Int. Jnl. Math. Ed. Sci. Tech., 19 (1988), 519–535.

    Article  MathSciNet  Google Scholar 

  6. Adam J.A. and Noren R., Equilibrium model of a vascularized spherical carcinoma with central necrosis: some properties of the solution, J. Math. Biol, 31 (1993), 735–745.

    Article  MathSciNet  MATH  Google Scholar 

  7. Adam J.A., The effects of vascularization on lymphocyte-tumor cell dynamics: qualitative features, Math. Comp. Modelling-Special issue on modeling and simulation problems on tumor/immune system dynamics, Bellomo N. ed., 23 (1996), 1–10.

    Google Scholar 

  8. Adam J.A., The dynamics of growth-factor-modified immune response to cancer growth: one dimensional models, Math. Comp. Modelling, 17 (1993), 83–106.

    Article  MathSciNet  MATH  Google Scholar 

  9. Adam J.A. and Panetta J.C., A simple mathematical model and alternative paradigm for certain chemotherapeutic regimes, Math. Comp. Modelling, 22 (1995), 49–60.

    Article  MathSciNet  MATH  Google Scholar 

  10. Adam J.A., Solution uniqueness and stability criteria for a model of growth factor production, Appl. Math. Lett., 5 (1992), 89–92.

    Article  MathSciNet  MATH  Google Scholar 

  11. Adam J. A., Asymptotic solutions and spectral theory of linear wave equations, Phys. Repts., 86 (1982), 217–316.

    Article  MathSciNet  Google Scholar 

  12. Adam J.A., Critical layer singularities and complex eigenvalues in some differential equations of mathematical physics, Phys. Repts., 142 (1986), 263–356.

    Article  MathSciNet  Google Scholar 

  13. Adam J.A., A linear scattering problem in magnetohydrodynamics: transmission resonances in a magnetic slab, Astrophys. Sp. Sci., 133 (1987), 317–337.

    Article  MATH  Google Scholar 

  14. Adam J.A., Non-radial stellar oscillations: a perspective from potential scattering. I. Theoretical foundations, Astrophys. Sp. Sci., 220 (1994), 179–233.

    Article  MathSciNet  MATH  Google Scholar 

  15. Adam J.A. and Maggelakis S.A., A mathematical model of tumor growth. IV. Effects of a necrotic core, Math. Biosci., 97 (1989), 121–136.

    Article  MATH  Google Scholar 

  16. Baym G., Lectures on Quantum Mechanics, Benjamin (1989).

    Google Scholar 

  17. Bender E.A., An Introduction to Mathematical Modeling, Wiley (1978).

    Google Scholar 

  18. Bell G.I., Predator-prey equations simulating an immune response, Math. Biosci., 16 (1973), 291–314.

    Article  MATH  Google Scholar 

  19. Bell G.I., Some models for the interaction between cells of the immune system, in Systems Theory in Immunology, Brini C., Doria G., Koch G., and Strom R. eds., Lecture Notes in Biomath-ematics, Vol. 32, Springer-Verlag (1979), 66–74.

    Google Scholar 

  20. Bajzer Z. and Vuk-Pavlovic S., Quantitative aspects of autocrine regulation in tumors, Crit. Rev. Oncog., 2 (1990), 53–73.

    Google Scholar 

  21. Bajzer Z., Marusic M., and Vuk-Pavlovic S., Conceptual frameworks for mathematical modeling of tumor growth dynamics, Math. Comp. Modelling-Special Issue on Modelling and Simulation Problems on Tumor-Immune System Dynamics, Bellomo N. ed., 23 (1996), 31–46.

    Google Scholar 

  22. Bellomo N. and Forni G., Dynamics of tumor interaction with the host immune system, Math. Comp. Modelling, 20 (1994), 107–122.

    Article  MATH  Google Scholar 

  23. Burton A.C., Rate of growth of solid tumors as a problem of diffusion, Growth, 30 (1966), 159–176.

    Google Scholar 

  24. Britton N.F. and Chaplain M.A.J., A qualitative analysis of some models of tissue growth, Math. Biosci., 113 (1993), 77–89.

    Article  MATH  Google Scholar 

  25. Bullough W.W., Mitotic and functional homeostasis: a speculative review, Cancer Res., 25 (1965), 1683–1727.

    Google Scholar 

  26. Bullough W.W. and Deol J.U.R., The pattern of tumor growth, Symp. Soc. Exp. Biol., 25 (1971), 225–275.

    Google Scholar 

  27. Byrne H.M. and Chaplain M.A.J., Growth of non-necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151–181.

    Article  MATH  Google Scholar 

  28. Casciari J.J., Sotiochos S.V., and Sutherland R.M., Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumor spheroids, Cell Prolif., 25 (1992), 1–22.

    Article  Google Scholar 

  29. Chaplain M.A.J. and Britton N.F., On the concentration profile of a growth inhibitory factor in multicell spheroids, Math. Biosci., 115 (1993), 233–243.

    Article  MATH  Google Scholar 

  30. Chaplain M.A.J., Benson D.L., and Maini P.K., Nonlinear diffusion of a growth inhibitory factor in multicell spheroids, Math. Biosci., 121 (1994), 1–13.

    Article  MATH  Google Scholar 

  31. Chaplain M.A.J., The development of a spatial pattern in a model for cancer growth, in Experimental and Theoretical Advances in Biological Pattern Formation, Othmer H.G., Maini P.K., and Murray J.D. eds., Plenum Press (1993), 45–60.

    Google Scholar 

  32. Chaplain M.A.J. and Sleeman B.D., A mathematical model for the growth and classification of a solid tumor: a new approach via nonlinear elasticity theory using strain-energy functions, Math. Biosci., 111 (1992), 169–215.

    Article  MathSciNet  MATH  Google Scholar 

  33. Chaplain M.A.J. and Sleeman B.D., Modelling the growth of solid tumors and incorporating a method for their classification using nonlinear elasticity theory, J. Math. Biol., 31 (1993), 431–473.

    Article  MathSciNet  MATH  Google Scholar 

  34. Chaplain M.A.J., Avascular growth, angiogenesis, and vascular growth in solid tumors: the mathematical modelling of the stages of tumor development, Math. Comp. Modelling-Special issue on modeling and simulation problems on tumor/immune system dynamics, Bellomo N. ed., 23 (1996), 47–88.

    Google Scholar 

  35. Craig I.J.D. and Brown J.C., Inverse Problems in Astronomy, Adam Hilger (1986).

    Google Scholar 

  36. Deakin A., Model for the growth of a solid in-vitro tumor, Growth, 39 (1975), 159–165.

    Google Scholar 

  37. Deakin M.A.B., Applied catastrophe theory in the social and biological sciences, Bull. Math. Biology, 42 (1980), 647–679.

    MathSciNet  MATH  Google Scholar 

  38. Delisi C. and Rescigno A., Immune surveillance and neoplasia-I. A minimal mathematical model, Bull. Math. Biol., 39 (1977), 201–221.

    MathSciNet  MATH  Google Scholar 

  39. Edelstein-Keshet L., Mathematical Models in Biology, Random House (1988).

    Google Scholar 

  40. Ekeland I., Mathematics and the Unexpected, University of Chicago Press (1988), Chapter 3.

    Google Scholar 

  41. Fife P.C., Mathematical aspects of reacting and diffusing systems, in Lecture Notes in Biomathematics, 28 (1979), Springer-Verlag.

    Google Scholar 

  42. Franko A.J. and Sutherland R.M., Oxygen diffusion distance and the development of necrosis in multicell spheroids, Radiat. Res., 79 (1979), 439–453.

    Article  Google Scholar 

  43. Folkman J., Tumor angiogenesis, Adv. Cancer Res., 19 (1974), 331–358.

    Article  Google Scholar 

  44. Folkman J. and Greenspan H.P., Influence of geometry on control of cell growth, Biochim. Biophys. Acta, 417 (1975), 211–236.

    Google Scholar 

  45. Folkman F. and Klagsbrun M., Angiogenic factors, Science, 235 (1987), 442–447.

    Article  Google Scholar 

  46. Folkman J. and Hochberg M., Self-regulation of growth in three dimensions, J. Exp. Med., 138 (1973), 745–753.

    Article  Google Scholar 

  47. Freyer J.P., Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply, Cancer Res., 46 (1986), 3504–3512.

    Google Scholar 

  48. Freyer J.P., Role of necrosis in regulating the growth saturation of multicellular spheroids, Cancer Res., 48 (1988), 2432–2439.

    Google Scholar 

  49. Goodwin B.C. and Trainor L.E.H., A field description of the cleavage process in embryogenesis, J. Theor. Biol., 85 (1980), 757–770.

    Article  Google Scholar 

  50. Griffel D.H., Applied Functional Analysis, Ellis Harwood (1981).

    Google Scholar 

  51. Ghosh Roy D.N., Methods of Inverse Problems in Physics, CRC Press (1991).

    Google Scholar 

  52. Glass L., Instability and mitotic patterns in tissue growth, J. Dyn. Syst. Meas. Control, 95 (1973), 324–327.

    Article  Google Scholar 

  53. Goldacre R.J. and Sylven B., On the access of blood-borne dyes to various tumor regions, Br. J. Cancer, 16 (1962), 306–322.

    Article  Google Scholar 

  54. Greenspan, H.P., Models for the growth of a solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317–340.

    MATH  Google Scholar 

  55. Greenspan H.P., On the self-inhibited growth of cell cultures, Growth, 38 (1974), 81–95.

    Google Scholar 

  56. Greenspan H.P., On the growth and stability of cell cultures and solid tumors, J. Theor. Biol, 56 (1976), 229–242.

    Article  MathSciNet  Google Scholar 

  57. Goustin A.S., Loef E.B., Shipley G.D., and Moses H.L., Growth factors and cancer, Cancer Res., 46 (1986), 1015–1018.

    Google Scholar 

  58. Henkart P.A., Mechanism of lymphocyte-mediated cytotoxicity, Ann. Rev. Immunol., 3 (1985), 31–58.

    Article  Google Scholar 

  59. Jain R.K. and Wei J., Dynamics of drug transport in solid tumors: distributed parameter model, J. Bioeng., 1 (1977), 313–330.

    Google Scholar 

  60. Jain R.K., Barriers to drug delivery in solid tumors, Sci. Amer., 271 (1994), 58–65.

    Article  Google Scholar 

  61. Jain R.K., Comment made by him during a lecture at the International Center for Mathematical Sciences, February 1995.

    Google Scholar 

  62. Jones D.S. and Sleeman B., Differential Equations and Mathematical Biology, George Allen and Unwin (1983).

    Google Scholar 

  63. Kendall D.G., A form of wave propagation associated with the equation of heat conduction, Proc. Camb. Phil. Soc, 44 (1948), 591–594.

    Article  MathSciNet  MATH  Google Scholar 

  64. King W.E., Schultz D.S., and Gatenby R.A., Multi-region models for describing oxygen tension profiles in human tumors, Chem. Eng. Commun., 47 (1986), 73–91.

    Article  Google Scholar 

  65. Laird A.K., Dynamics of tumor growth. Comparison of growth rates and extrapolation of growth curve to one cell, Br. J. Cancer, 19 (1965), 278–291.

    Article  Google Scholar 

  66. Lefever R. and Garay R.P., A mathematical model of the immune surveillance against cancer, in Theoretical Immunology, Bell G.I., Perelson A.S., and Pimbley G. eds., Marcel Dekker (1978), 481–518.

    Google Scholar 

  67. Lefever R. and Garay R.P., Local description of immune tumor rejection, in Biomathematics and Cell Kinetics, Vallerron A.J. and MacDonald P.D.M. eds., Elsevier (1978), 333–344.

    Google Scholar 

  68. Lefever R. and Erneux T., On the growth of cellular tissues under constant and fluctuating environmental conditions, in Nonlinear Electrodynamics in Biological Systems, Ross W. and Lawrence A. eds., Plenum Press (1984), 287–305.

    Google Scholar 

  69. Lefever R. and Horsthemke W., Bistability in fluctuating environments. Implications in tumor immunology, Bull. Math. Biol., 41 (1979), 469–490.

    MATH  Google Scholar 

  70. Lefever R., Hiernaux J., Urbain J., and Meyers P., On the kinetics and optimal specificity of cytotoxic reactions mediated by T-lymphocyte clones, Bull. Math. Biol., 54 (1992), 839–873.

    MATH  Google Scholar 

  71. Levins R., Evolution in Changing Environments, Princeton University Press (1968), 7.

    Google Scholar 

  72. Maggelakis S., Type αand type ßtransforming growing factors as regulators of cancer cellular growth: a mathematical model, Math. Comp. Modelling, 18 (1993), 9–16.

    Article  MATH  Google Scholar 

  73. Maggelakis S. and Adam J.A., Mathematical model for prevascu-lar growth of a spherical carcinoma, Math. Comp. Modelling, 13 (1990), 23–38.

    Article  MATH  Google Scholar 

  74. McElwain D.L.S. and Ponzo P.J., A model for the growth of solid tumor with non-uniform oxygen consumption, Math. Biosci., 35 (1977), 267–279.

    Article  MATH  Google Scholar 

  75. [MCb] McElwain D.L.S. and Morris L.E., Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth, Math. Biosci., 39 (1978), 147–157.

    Article  Google Scholar 

  76. [MCc] McElwain D.L.S., Callcott R., and Morris L.E., A model of vascular compression in solid tumors, J. Theor. Biol., 78 (1979), 405–415.

    Article  Google Scholar 

  77. [MEa] Messiah A., Quantum Mechanics, North-Holland (1961).

    Google Scholar 

  78. [MKa] Müller-Klieser W.F. and Sutherland R.M., Influence of convection in the growth medium on oxygen tensions in multicell tumor spheroids, Cancer Res., 42 (1982), 237–242.

    Google Scholar 

  79. [MKb] Müller-Klieser W.F. and Sutherland R.M., Oxygen tensions in multicell spheroids of two cell lines at different stages of growth, Br. J. Cancer, 45 (1982), 256–264.

    Article  Google Scholar 

  80. [MKc] Müller-Klieser W.F. and Sutherland R.M., Frequency distribution histograms of oxygen tensions in multicell spheroids, in Oxygen Transport to Tissue, Bicker H.I. and Briley D.F. eds., Plenum Press (1983), Vol. IV, 497–508.

    Google Scholar 

  81. [MRa] Marusic M., Bajzer Z., Freyer J.P., and Vuk-Pavlovic S., Modeling autostimulation of growth in multicellular tumor spheroids, Int. J. Biomed. Comput., 29 (1991), 149–158.

    Article  Google Scholar 

  82. [MRb] Marusic M. and Bajzer Z., Generalized two-parameter equation of growth, J. Math. Anal. Applics., 179 (1993), 446–462.

    Article  MathSciNet  MATH  Google Scholar 

  83. [MRc] Marusic M., Bajzer Z., Freyer J.P., and Vuk-Pavlovic S., Analysis of growth of multicellular tumor spheroids by mathematical models, Cell Prolif., 27 (1994), 73–94.

    Article  Google Scholar 

  84. [MRd] Marusic M., Bajzer Z., Vuk-Pavlovic S., and Freyer J.P., Tumor growth in-vivo and as multicellular spheroids compared by mathematical models, Bull. Math. Biol., 56 (1994), 617–631.

    MATH  Google Scholar 

  85. [MUa] Murray J.D., Mathematical Biology, Springer-Verlag (1989).

    Google Scholar 

  86. [MXa] Marx J.L., How cancer cells spread in the body, Science, 244 (1989), 47–48.

    Google Scholar 

  87. [OLa] Old L.J., Tumor necrosis factor, Sci. Amer., 258 (1988), 59–75.

    Article  Google Scholar 

  88. [PEa] Perelson A.S. and Kauffman S.A. eds., Molecular Evolution on Rugged. Landscapes: Proteins, RNA and the Immune System, Addison-Wesley (1991).

    Google Scholar 

  89. [PGa] Prigogine I. and Lefever R., Stability problems in cancer growth and nucleation, Comp. Biochem. Physiol, 67B (1980), 389–393.

    Google Scholar 

  90. [PIa] Pimbley G.H., Periodic solutions of predator-prey equations simulating an immune response, I, Math. Biosci., 20 (1974), 27–51.

    Article  MathSciNet  MATH  Google Scholar 

  91. [PIb] Pimbley G.H., Periodic solutions of predator-prey equations simulating an immune response, II, Math. Biosci., 21 (1974), 251–277.

    Article  MathSciNet  MATH  Google Scholar 

  92. [PRa] Prehn R.T., Stimulatory effects of immune reactions upon the growth of transplanted tumors, Cancer Res., 55 (1994), 908–914.

    Google Scholar 

  93. [QIa] Qi A.-S., Multiple solutions of model describing cancerous growth, Bull. Math. Biol, 50 (1988), 1–17.

    MathSciNet  MATH  Google Scholar 

  94. [REa] Rescigno A. and Le Lisi C., Immune surveillance and neoplasia-II. A two-stage mathematical model, Bull. Math. Biol., 39 (1977), 487–497.

    MATH  Google Scholar 

  95. [ROa] Roberts A.B., Anzano M.A., Wakefield L.M., Roche N.S., Roche D.F., Stern D.F., and Sporn M.B., Type beta-transforming growth factor: a bifunctional regulator of cellular growth, Proc. Nat. Acad. Sci., (1985), 119–121.

    Google Scholar 

  96. [SCa] Schiff L.I., Quantum Mechanics, McGraw-Hill (1968).

    Google Scholar 

  97. [SHa] Shymko R.M. and Glass L., Cellular and geometric control of tissue growth and mitotic instability, J. Theor. Biol., 63 (1976), 355–374.

    Article  Google Scholar 

  98. [SPa] Sporn M.B. and Todaro G.J., Autocrine secretion and malignant transformation of cells, New Engl. J. Med., 303 (1980), 878–880.

    Article  Google Scholar 

  99. [SPb] Sporn M.B. and Roberts A.B., Autocrine growth factors and cancer, Nature, 313 (1985), 745–747.

    Article  Google Scholar 

  100. [SRa] Sherratt J.A. and Nowak M.A., Oncogenes, antioncogenes and the immune response to cancer, Proc. Roy. Soc. Lond., B 248 (1992), 261–271.

    Article  Google Scholar 

  101. [SRb] Sherratt J.A., Cellular growth control and traveling waves of cancer, SIAM J. Appl. Math., 53 (1993), 1713–1730.

    Article  MathSciNet  MATH  Google Scholar 

  102. [SUa] Sutherland R.M., McCredie J.A., and Inch W.R., Growth of multicellular spheroids in tissue culture as a model of nodular carcinomas, J. Natl. Cancer Inst., 46 (1971), 113–120.

    Google Scholar 

  103. [SUb] Sutherland R.M. and Durand R.E., Radiation response of multicellular spheroids: an in-vitro tumor model, Curr. Top. Rad. Res., 11 (1976), 87–139.

    Google Scholar 

  104. [SUc] Sutherland R.M. and Durand R.E., Growth and cellular characteristics of multicell spheroids, Rec. Res. Cane. Res., 95 (1985), 24–49.

    Article  Google Scholar 

  105. [SUd] Sutherland R.M., Cell and environment interactions in tumor mi-croregions: the multicell spheroid model, Science, 240 (1988), 177–184.

    Article  Google Scholar 

  106. [SWa] Swan G.W., Some Current Mathematical Topics in Cancer Research, University Microfilms International (1977).

    Google Scholar 

  107. [SWb] Swan G.W., The diffusion of inhibitor in a spherical tumor, Math. Biosci., 108 (1992), 75–79.

    Article  Google Scholar 

  108. [TAa] Tannock I.F., The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumor, Br. J. Cancer, 22 (1968), 258–273.

    Article  Google Scholar 

  109. [THa] Thorn R., Structural Stability and Morphogenesis: An Outline of a General Theory of Models, Addison-Wesley (1989).

    Google Scholar 

  110. [VAa] Vaupel P., Hypoxia in neoplastic tissue, Microvasc. Res., 13 (1977), 399–408.

    Article  Google Scholar 

  111. [VAb] Vaupel P., Oxygen supply to malignant tumors, in Tumor Blood Circulation. Angiogenesis, Morphology and Blood Flow of Experimental and Human Tumors, Peterson H.I. ed., CRC Press (1980), 144–168.

    Google Scholar 

  112. [VAc] Vaupel P., Namz R., Múller-Klieser W.F., and Grunewald W.A., Intracapillary Hb02 saturation in malignant tumors during nor-moxia and hyperoxia, Microvasc. Res., 17 (1979), 181–191.

    Article  Google Scholar 

  113. [VYa] Vaidya V.G. and Alexandra F.J., Evaluation of some mathematical models for tumor growth, Int. J. Bio-Med. Comp., B (1982), 19–35.

    Article  Google Scholar 

  114. [WHa] Wheldon T.E., Mathematical Models in Cancer Research, Adam Hilger (1988).

    Google Scholar 

  115. [WOa] Woodcock A.E.R., Cellular differentiation and catastrophe theory, Ann. N.Y. Acad. Sci., 231 (1974), 60–76.

    Article  MATH  Google Scholar 

  116. [WOb] Woodcock A.E.R., Catastrophe theory and cellular determination, transdetermination and differentiation, Bull. Math. Biol., 41 (1979), 101–117.

    MathSciNet  Google Scholar 

  117. [ZEa] Zeeman E.C., Applications of Catastrophe Theory, Tokyo University Press (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adam, J.A. (1997). General Aspects of Modeling Tumor Growth and Immune Response. In: Adam, J.A., Bellomo, N. (eds) A Survey of Models for Tumor-Immune System Dynamics. Modeling and Simulation in Science, Engineering, & Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8119-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8119-7_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6408-8

  • Online ISBN: 978-0-8176-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics