Skip to main content
Log in

Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Medically, tumours are classified into two important classes — benign and malignant. Generally speaking, the two classes display different behaviour with regard to their rate and manner of growth and subsequent possible spread. In this paper, we formulate a new approach to tumour growth using results and techniques from nonlinear elasticity theory. A mathematical model is given for the growth of a solid tumour using membrane and thick-shell theory. A central feature of the model is the characterisation of the material composition of the model through the use of a strain-energy function, thus permitting a mathematical description of the degree of differentiation of the tumour explicitly in the model. Conditions are given in terms of the strain-energy function for the processes of invasion and metastasis occurring in a tumour, being interpreted as the bifurcation modes of the spherical shell which the tumour is essentially modelled as. Our results are compared with actual experimental results and with the general behaviour shown by benign and malignant tumours. Finally, we use these results in conjunction with aspects of surface morphogenesis of tumours (in particular, the Gaussian and mean curvatures of the surface of a solid tumour) in an attempt to produce a mathematical formulation and description of the important medical processes of staging and grading cancers. We hope that this approach may form the basis of a practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, J. A.: A simplified mathematical model of tumour growth. Math. Biosci. 81, 224–229 (1986)

    Google Scholar 

  • Aroesty, J., Lincoln, T., Shapiro, N., Boccia, G.: Tumour growth and chemotherapy: mathematical methods, computer simulations, and experimental foundations. Math. Biosci. 17, 243–300 (1973)

    Google Scholar 

  • Balding, D., McElwain, D. L. S.: A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73 (1985)

    Google Scholar 

  • Bogen, D. K.: Strain energy descriptions of biological swelling I: single fluid compartment models. ASME J. Biomech. Eng. 109, 252–256 (1987)

    Google Scholar 

  • Brzakovic, D., Luo, X. M., Brzakovic, P.: An approach to automated detection of tumours in mammograms. IEEE Trans. Med. Imag. 9, 233–241 (1990)

    Google Scholar 

  • Burton, A. C.: Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176 (1966)

    Google Scholar 

  • Chaplain, M. A. J., Sleeman, B. D.: An application of membrane theory to tip morphogenesis in Acetabularia. J. Theor. Biol. 146, 177–200 (1990)

    Google Scholar 

  • Chaplain, M. A. J., Sleeman, B. D.: A mathematical model for the production and secretion of tumour angiogenesis factor in tumours. IMA J. Math. Appl. Med. Biol. 7, 93–108 (1990)

    Google Scholar 

  • Cummings, F. W.: On surface geometry coupled to morphogen. J. Theor. Biol. 137, 215–219 (1989)

    Google Scholar 

  • Demiray, H.: Large deformation analysis of some basic problems in biophysics. Bull. Math. Biol. 38, 701–712 (1976)

    Google Scholar 

  • Demiray, H.: Large deformation analysis of some soft biological tissues. ASME J. Biomech. Eng. 103, 73–78 (1981)

    Google Scholar 

  • Dhawan, A. P., Buelloni, G., Gordon, R.: Enhancement of mammographic features by optimal adaptive neighborhood image processing. IEEE Trans. Med. Imag. 5, 8–15 (1986)

    Google Scholar 

  • Duncan, J. S., Lee, F. A., Smeulders, A. W. M., Zaret, B. L.: A bending energy model for measurement of cardiac shape deformity. IEEE Trans. Med. Imag. 10, 307–320 (1991)

    Google Scholar 

  • Feodos'ev, V. I.: On equilibrium modes of a rubber spherical shell. Prikl. Mat. Mekh. 32, 335–341 (1968)

    Google Scholar 

  • Folkman, J.: The vascularization of tumours. Sci. Am. 234, 58–73 (1976)

    Google Scholar 

  • Folkman, J., Moscona, A.: The role of cell shape in growth control. Nature (London) 273, 345–349 (1978)

    Google Scholar 

  • Fung, Y. C.: Biomechanics. Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  • Gallez, D.: Cell membranes after malignant transformation part I: dynamic stability at low surface tension. J. Theor. Biol. 111, 323–340 (1984)

    Google Scholar 

  • Gou, P. F.: Strain energy functions for biological tissues. J. Biomech. 3, 547–550 (1970)

    Google Scholar 

  • Greenspan, H. P.: Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51, 317–340 (1972)

    Google Scholar 

  • Greenspan, H. P.: On the self-inhibited growth of cell cultures. Growth 38, 81–97 (1974)

    Google Scholar 

  • Greenspan, H. P.: On the growth and stability of cell cultures and solid tumours. J. Theor. Biol. 56, 229–242 (1976)

    Google Scholar 

  • Greenspan, H. P.: On the dynamics of cell cleavage. J. Theor. Biol. 65, 79–99 (1977a)

    Google Scholar 

  • Greenspan, H. P.: On the deformation of a viscous droplet caused by variable surface tension. Stud. Appl. Math. 57, 45–58 (1977b)

    Google Scholar 

  • Greenspan, H. P.: On fluid-mechanical simulations of cell division and movement. J. Theor. Biol. 70, 125–134 (1978)

    Google Scholar 

  • Gyllenberg, M., Webb, G. F.: Quiescence as an explanation of Gompertzian tumour growth. Growth Dev. Aging 53, 25–33 (1989)

    Google Scholar 

  • Haralick, R. M., Watson, L. T., Laffey, T. J.: The topographic primal sketch. Int. J. Robot. Res. 2, 50–72 (1983)

    Google Scholar 

  • Hart, T. N., Trainor, L. E. H.: Geometrical aspects of surface morphogenesis. J. Theor. Biol. 138, 271–296 (1989)

    Google Scholar 

  • Haughton, D. M., Ogden, R. W.: On the incremental equations in nonlinear elasticity — I Membrane theory. J. Mech. Phys. Solids 26, 93–110 (1978a)

    Google Scholar 

  • Haughton, D. M., Ogden, R. W.: On the incremental equations in nonlinear elasticity — II Bifurcation of pressurized spherical shells. J. Mech. Phys. Solids 26, 111–138 (1978b)

    Google Scholar 

  • Hettiaratchi, D. R. P., O'Callaghan, J. R.: A membrane model of plant cell extension. J. Theor. Biol. 45, 459–465 (1974)

    Google Scholar 

  • Hettiaratchi, D. R. P., O'Callaghan, J. R.: Structural mechanics of plant cells. J. Theor. Biol. 74, 235–257 (1978)

    Google Scholar 

  • Humphrey, J. D., Yin, F. C. P.: On constitutive relations and finite deformations of passive cardiac tissue: I. a pseudostrain energy function. ASME J. Biomech. Eng. 109, 298–304 (1987)

    Google Scholar 

  • Isenberg, C.: The Science of Soap Films and Soap Bubbles. Tieto: Woodspring 1978

    Google Scholar 

  • Lai, S-M., Li, Z., Bischof, W. F.: On techniques for detecting circumscribed masses in mammograms. IEEE Trans. Med. Imag. 8, 377–386 (1989)

    Google Scholar 

  • Landau, L. D., Lifschitz, E. M.: Theory of Elasticity. London: Pergamon 1959

    Google Scholar 

  • McCoy, E. L.: The strain energy function in axial plant growth. J. Math. Biol. 27, 575–594 (1989)

    Article  MATH  Google Scholar 

  • Melicow, M. M.: The three steps to cancer: a new concept of cancerigenesis. J. Theor. Biol. 94, 471–511 (1982)

    Google Scholar 

  • Muir, Sir Robert: In: Anderson, J. R. (ed.) Muir's Textbook of Pathology, 12 ed. London: E. Arnold 1985

    Google Scholar 

  • Needleman, A.: Necking of pressurized spherical membranes. J. Mech. Phys. Solids 24, 339–359 (1976)

    Google Scholar 

  • Needleman, A.: Inflation of spherical rubber membranes. Int. J. Solids Struct. 13, 409–421 (1977)

    Google Scholar 

  • Nicolson, G.: Transmembrane control of the receptors on normal and tumour cells II Surface changes associated with transformation and malignancy. Biochim. Biophys. Acta 458, 1–72 (1976)

    Google Scholar 

  • Norton, L., Simon, R., Brereton, H. D., Bogden, A. E.: Predicting the course of Gompertzian growth. Nature 264, 542–545 (1976)

    Google Scholar 

  • Ogden, R. W.: Large deformation isotropic elasticity — on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc., Ser. A 326, 565–584 (1972)

    Google Scholar 

  • Ogden, R. W.: On stress rates in solid mechanics with application to elasticity theory. Proc. Camb. Philos. Soc. 75, 303–319 (1974)

    Google Scholar 

  • Perham, D. M., Robertson, A. J., Brown, R. A.: Morphometric analysis of breast carcinoma: association with survival. J. Clin. Pathol. 41, 173–177 (1988)

    Google Scholar 

  • Paweletz, N., Knierim, M.: Tumour-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242 (1989)

    Google Scholar 

  • Richardson, D.: Random growth in a tessellation. Proc. Camb. Philos. Soc. 74, 515–528 (1973)

    Google Scholar 

  • Robb, R. A., Barillot, C.: Interactive display and analysis of 3-D medical images. IEEE Trans. Med. Image. 8, 217–226 (1989)

    Google Scholar 

  • Schwegler, H., Tarumi, K., Gerstman, B.: Physico-chemical model of a protocell. J. Math. Biol. 22, 335–348 (1985)

    Google Scholar 

  • Sekimura, T., Hotani, H.: The morphogenesis of liposomes viewed from the aspect of bending energy. J. Theor. Biol. 149, 325–337 (1991)

    Google Scholar 

  • Skalak, R., Tozeren, A., Zarda, R. P., Chien, S.: Strain energy function of red blood cell membranes. Biophys. J. 13, 245–264 (1973)

    Google Scholar 

  • Shymko, R. M., Glass, L.: Cellular and geometric control of tissue growth and geometric instability. J. Theor. Biol. 63, 355–375 (1976)

    Google Scholar 

  • Sutherland, R. M., McCredie, J. A., Inch, W. R.: Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Nat. Cancer Inst. 46, 113–120 (1971)

    Google Scholar 

  • Svetina, S., Ottova-Leitmannova, A., Glaser, R.: Membrane bending energy in relation to bilayer couples concept of red blood cell shape transformations. J. Theor. Biol. 94, 13–23 (1982)

    Google Scholar 

  • Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. 21, 205–214 (1987)

    Google Scholar 

  • Thomlinson, R. H., Grey, L. H.: The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955)

    Google Scholar 

  • Thompson, D'Arcy W. (ed.): On Growth and Form, abridged. Cambridge: Cambridge University Press (1961)

    Google Scholar 

  • Todd, P. H.: Gaussian curvature as a parameter of biological surface growth. J. Theor. Biol. 113, 63–68 (1985)

    Google Scholar 

  • Tubiana, M.: The kinetics of tumour cell proliferation and radiotherapy. Br. J. Radiol. 44, 325–347 (1971)

    Google Scholar 

  • Vito, R.: A note on arterial elasticity. J. Biomech. 6, 561–564 (1973)

    Google Scholar 

  • Williams, T., Bjerknes, R.: Stochastic model for abnormal clone spread through epithelial basal layer. Nature 236, 19–21 (1972)

    Google Scholar 

  • Willmott, N., Goldberg, J., Anderson, J., Bessent, R., McKillop, J., McArdle, C.: Abnormal vascualature of solid tumours: significance for microsphere-based targetting strategies. Int. J. Radiat. Biol. (to appear)

  • Wu, H., Spence, R. D., Sharpe, P. J. H.: Plant cell wall elasticity II: polymer elastic properties of the microfibrils. J. Theor. Biol. 133, 239–253 (1988)

    Google Scholar 

  • Zinemanas, D., Nir, A.: On the viscous deformation of biological cells under anisotropic surface tension. J. Fluid Mech. 193, 217–241 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplain, M.A.J., Sleeman, B.D. Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory. J. Math. Biol. 31, 431–473 (1993). https://doi.org/10.1007/BF00173886

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173886

Key words

Navigation