Skip to main content

Integrable linear equations and the Riemann-Schottky problem

  • Chapter
Algebraic Geometry and Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 253))

Summary

We prove that an indecomposable principally polarized abelian variety X is the Jacobain of a curve if and only if there exist vectors U ≠ 0, V such that the roots x i(y) of the theta-functional equation θ(Ux + Vy + Z) = 0 satisfy the equations of motion of the formal infinite-dimensional Calogero-Moser system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math., 83-2 (1986), 333–382.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. A. Dubrovin, Kadomtsev-Petviashvili equation and relations for the matrix of periods on Riemann surfaces, Izv. Akad. Nauk SSSR Ser. Mat., 45 (1981), 1015–1028.

    MATH  MathSciNet  Google Scholar 

  3. V. E. Zakharov and A. B. Shabat, Integration method of nonlinear equations of mathematical physics with the help of the inverse scattering problem, Funk. Anal Pril., 8-3 (1974), 43–53.

    MathSciNet  Google Scholar 

  4. V. S. Druma, On analytic solution of the two-dimensional Korteweg-de Vries equation, JETP Lett., 19-12 (1974), 219–225.

    Google Scholar 

  5. I. M. Krichever, Integration of non-linear equations by methods of algebraic geometry, Functional Anal. Appl., 11-1 (1977), 12–26.

    Article  MATH  Google Scholar 

  6. I. M. Krichever, Methods of algebraic geometry in the theory of non-linear equations, Russian Math. Surveys, 32-6 (1977), 185–213.

    Article  MATH  Google Scholar 

  7. E. Arbarello, I. Krichever, and G. Marini, Characterizing Jacobians via flexes of the Kummer variety, 2005, math.AG/0502138.

    Google Scholar 

  8. G. E. Welters, A criterion for Jacobi varieties, Ann. Math., 120-3 (1984), 497–504.

    Article  MathSciNet  Google Scholar 

  9. J. L. Burchnall and T.W. Chaundy, Commutative ordinary differential operators I, Proc. London Math Soc., 21 (1922), 420–440.

    Article  Google Scholar 

  10. J. L. Burchnall and T.W. Chaundy, Commutative ordinary differential operators II, Proc. Roy. Soc. London, 118 (1928), 557–583.

    Article  Google Scholar 

  11. E. Arbarello and C. De Concini, Another proof of a conjecture of S. P. Novikov on periods of abelian integrals on Riemann surfaces, Duke Math. J., 54 (1987), 163–178.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Marini, A geometrical proof of Shiota’s theorem on a conjecture of S. P. Novikov, Comp. Math., 111 (1998), 305–322.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Krichever and D. H. Phong, Symplectic forms in the theory of solitons, in C. L. Terng and K. Uhlenbeck, eds., Surveys in Differential Geometry IV, International Press, Cambridge, MA, 1998, 239–313.

    Google Scholar 

  14. L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, Vol. 12, World Scientific, Singapore, 1991.

    MATH  Google Scholar 

  15. D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations, in Proceedings of the International Symposium on Algebraic Geometry, Kyoto, 1977, Kinokuniya Book Store, Kyoto, 1978, 115–153.

    Google Scholar 

  16. G. Sigal and G. Wilson, Loop groups and equations of KdV type, IHES Publ. Math., 61 (1985), 5–65.

    Google Scholar 

  17. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, IHES Publ. Math., 36 (1969), 75–109.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Krichever, I. (2006). Integrable linear equations and the Riemann-Schottky problem. In: Ginzburg, V. (eds) Algebraic Geometry and Number Theory. Progress in Mathematics, vol 253. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4532-8_8

Download citation

Publish with us

Policies and ethics