Skip to main content

Proteinase Optical Imaging Tools for Cancer Detection and Response to Therapy

  • Chapter
  • First Online:
Optical Imaging of Cancer

Abstract

A variety of physiological processes such as wound healing and tissue remodeling are mediated by a plethora of proteinases – enzymes that can hydrolyze peptide bonds – of which as many as 622 have been identified in the human genome. These proteinases are classified into five of the seven clans of peptidases with known catalytic type: S (serine), C (cysteine), A (aspartyl), M (metallo), and T (threonine) [MEROPS, http://merops.sanger.ac.uk; (Rawlings et al. 2008) (Fig. 1)]. In many physiological processes, the proteinases mediate and/or regulate both intercellular signaling, such as in the release and/or processing of chemokines, and intracellular pathways, such as in the apoptotic pathways leading to programmed cell death. Dysregulation of the temporal and/or spatial co-ordination of these intracellular and/or intercellular pathways disrupts the normal physiology and rhythm of life that can be manifest in unregulated growth such as occurs in tumors and their metastatic progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achilefu, S. 2004. Lighting up tumors with receptor-specific optical molecular probes. Technology in Cancer Research and Treatment 3 (4):393–409.

    CAS  PubMed  Google Scholar 

  • Achilefu, S., H. N. Jimenez, R. B. Dorshow, J. E. Bugaj, E. G. Webb, R. R. Wilhelm, R. Rajagopalan, J. Johler, and J. L. Erion. 2002. Synthesis, in vitro receptor binding, and in vivo evaluation of fluorescein and carbocyanine peptide-based optical contrast agents. Journal of Medicinal Chemistry 45 (10):2003–15.

    Article  CAS  PubMed  Google Scholar 

  • Alencar, H., M. A. Funovics, J. Figueiredo, H. Sawaya, R. Weissleder, and U. Mahmood. 2007. Colonic adenocarcinomas: near-infrared microcatheter imaging of smart probes for early detection–study in mice. Radiology 244 (1):232–8.

    Article  PubMed  Google Scholar 

  • Barrett, A. J., N. D. Rawlings, and J. F. Woessner, Jr. 1998. Handbook of Proteolytic Enzymes. London: Academic Press.

    Google Scholar 

  • Baruch, A., D. A. Jeffery, and M. Bogyo. 2004. Enzyme activity–it’s all about image. Trends in Cell Biology 14 (1):29–35.

    Article  CAS  PubMed  Google Scholar 

  • Berger, D. H. 2002. Plasmin/plasminogen system in colorectal cancer. World Journal of Surgery 26 (7):767–771.

    Article  PubMed  Google Scholar 

  • Blum, G., S. R. Mullins, K. Keren, M. Fonovic, C. Jedeszko, M. J. Rice, B. F. Sloane, and M. Bogyo. 2005. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nature Chemical Biology 1 (4):203–9.

    Article  CAS  PubMed  Google Scholar 

  • Blum, G., G. von Degenfeld, M. J. Merchant, H. M. Blau, and M. Bogyo. 2007. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nature Chemical Biology 3 (10):668–77.

    Article  CAS  PubMed  Google Scholar 

  • Bremer, C., C. H. Tung, and R. Weissleder. 2001. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Medicine 7 (6):743–8.

    Article  CAS  PubMed  Google Scholar 

  • Brinckerhoff, C. E., and L. M. Matrisian. 2002. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Reviews Molecular Cell Biology 3 (3):207–14.

    Article  CAS  PubMed  Google Scholar 

  • Brindle, K. 2008. New approaches for imaging tumour responses to treatment. Nature Reviews Cancer 8 (2):94–107.

    Article  CAS  PubMed  Google Scholar 

  • Bromme, D., and J. Kaleta. 2002. Thiol-dependent cathepsins: pathophysiological implications and recent advances in inhibitor design. Current Pharmaceutical Biotechnology 8 (18):1639–58.

    CAS  Google Scholar 

  • Caughey, G. H. 2007. Mast cell tryptases and chymases in inflammation and host defense. Immunological Reviews 217:141–54.

    Article  CAS  PubMed  Google Scholar 

  • Chan, E. W., S. Chattopadhaya, R. C. Panicker, X. Huang, and S. Q. Yao. 2004. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. Journal of the American Chemical Society 126 (44):14435–46.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki. 2005. Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study. Academic Radiology 12 (8):925–33.

    Article  PubMed  Google Scholar 

  • Chen, Y., A. Gryshuk, S. Achilefu, T. Ohulchansky, W. Potter, T. Zhong, J. Morgan, B. Chance, P. N. Prasad, B. W. Henderson, A. Oseroff, and R. K. Pandey. 2005. A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjugate Chemistry 16 (5):1264–74.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W. T., and T. Kelly. 2003. Seprase complexes in cellular invasiveness. Cancer Metastasis Review 22 (2–3):259–69.

    Article  Google Scholar 

  • Chen, Y., G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance. 2003. Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies. Optics Letters 28 (21):2070–72.

    Article  CAS  PubMed  Google Scholar 

  • Coussens, L. M., B. Fingleton, and L. M. Matrisian. 2002. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295 (5564):2387–92.

    Article  CAS  PubMed  Google Scholar 

  • Coussens, L. M., and Z. Werb. 2002. Inflammation and cancer. Nature 420 (6917):860–7.

    Article  CAS  PubMed  Google Scholar 

  • David, A., D. Steer, S. Bregant, L. Devel, A. Makaritis, F. Beau, A. Yiotakis, and V. Dive. 2007. Cross-linking yield variation of a potent matrix metalloproteinase photoaffinity probe and consequences for functional proteomics. Angewandte Chemie (International Ed. in English) 46 (18):3275–7.

    Article  CAS  Google Scholar 

  • Dive, V., Paulick, M., McIntyre, J.O., Matrisian, L.M., and Bogyo, M. 2008. Activity-based imaging and biochemical profiling tools for analysis of the cancer degradome. Edited by D. Edwards, The Cancer Degradome, New York: Springer Science.

    Google Scholar 

  • Duffy, M. J. 1996. Proteases as prognostic markers in cancer. Clinical Cancer Research 2 (4):613–18.

    CAS  PubMed  Google Scholar 

  • Egeblad, M., and Z. Werb. 2002. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer 2 (3):161–74.

    Article  CAS  PubMed  Google Scholar 

  • Evans, M. J., and B. F. Cravatt. 2006. Mechanism-based profiling of enzyme families. Chemical Reviews 106 (8):3279–301.

    Article  CAS  PubMed  Google Scholar 

  • Fonovic, M., and M. Bogyo. 2007. Activity based probes for proteases: applications to biomarker discovery, molecular imaging and drug screening. Current Pharmaceutical Design 13 (3):253–61.

    Article  CAS  PubMed  Google Scholar 

  • Gross, J., and C. M. Lapiere. 1962. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proceedings of the National Academy of Sciences of the United States of America 48:1014–1022.

    Google Scholar 

  • Herszenyi, L., M. Plebani, P. Carraro, M. De Paoli, G. Roveroni, R. Cardin, F. Foschia, Z. Tulassay, R. Naccarato, and F. Farinati. 2000. Proteases in gastrointestinal neoplastic diseases. Clinica Chimica Acta 291 (2):171–87.

    Article  CAS  Google Scholar 

  • Izmailova, E. S., N. Paz, H. Alencar, M. Chun, L. Schopf, M. Hepperle, J. H. Lane, G. Harriman, Y. Xu, T. Ocain, R. Weissleder, U. Mahmood, A. M. Healy, and B. Jaffee. 2007. Use of molecular imaging to quantify response to IKK-2 inhibitor treatment in murine arthritis. Arthritis and Rheumatism 56 (1):117–28.

    Article  CAS  PubMed  Google Scholar 

  • Jaffer, F. A., P. Libby, and R. Weissleder. 2007. Molecular imaging of cardiovascular disease. Circulation 116 (9):1052–61.

    Article  PubMed  Google Scholar 

  • Jeffery, D. A., and M. Bogyo. 2003. Chemical proteomics and its application to drug discovery. Current Opinion in Biotechnology 14 (1):87–95.

    Article  CAS  PubMed  Google Scholar 

  • Jessani, N., M. Humphrey, W. H. McDonald, S. Niessen, K. Masuda, B. Gangadharan, J. R. Yates, 3rd, B. M. Mueller, and B. F. Cravatt. 2004. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proceedings of the National Academy of Sciences of the United States of America 101 (38):13756–61.

    Google Scholar 

  • Jessani, N., Y. Liu, M. Humphrey, and B. F. Cravatt. 2002. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proceedings of the National Academy of Sciences of the United States of America 99 (16):10335–40.

    Google Scholar 

  • Jiang, T., E. S. Olson, Q. T. Nguyen, M. Roy, P. A. Jennings, and R. Y. Tsien. 2004. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America 101 (51):17867–72.

    Google Scholar 

  • Joyce, J. A., A. Baruch, K. Chehade, N. Meyer-Morse, E. Giraudo, F. Y. Tsai, D. C. Greenbaum, J. H. Hager, M. Bogyo, and D. Hanahan. 2004. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5 (5):443–53.

    Article  CAS  PubMed  Google Scholar 

  • Kato, D., K. M. Boatright, A. B. Berger, T. Nazif, G. Blum, C. Ryan, K. A. Chehade, G. S. Salvesen, and M. Bogyo. 2005. Activity-based probes that target diverse cysteine protease families. Nature Chemical Biology 1 (1):33–8.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, K. A., S. R. Setlur, R. Ross, R. Anbazhagan, P. Waterman, M. A. Rubin, and R. Weissleder. 2008. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Research 68 (7):2286–91.

    Article  CAS  PubMed  Google Scholar 

  • Kerkela, E., R. Ala-aho, P. Klemi, S. Grenman, S. D. Shapiro, V. M. Kahari, and U. Saarialho-Kere. 2002. Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while that by macrophages predicts better outcome. Journal of Pathology 198 (2):258–69.

    Article  CAS  PubMed  Google Scholar 

  • Koblinski, J. E., M. Ahram, and B. F. Sloane. 2000. Unraveling the role of proteases in cancer. Clinica Chimica Acta 291 (2):113–35.

    Article  CAS  Google Scholar 

  • Lauer-Fields, J. L., and G. B. Fields. 2002. Triple-helical peptide analysis of collagenolytic protease activity. Biological Chemistry 383 (7–8):1095–105.

    Article  CAS  PubMed  Google Scholar 

  • Lauer-Fields, J. L., D. Minond, P. S. Chase, P. E. Baillargeon, S. A. Saldanha, R. Stawikowska, P. Hodder, and G. B. Fields. 2009. High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorganic & Medicinal Chemistry 17(3):990–1005.

    Article  Google Scholar 

  • Lecaille, F., J. Kaleta, and D. Bromme. 2002. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chemical Reviews 102 (12):4459–88.

    Article  CAS  PubMed  Google Scholar 

  • Lepage, M., W. C. Dow, M. Melchior, Y. You, B. Fingleton, C. C. Quarles, C. Pepin, J. C. Gore, L. M. Matrisian, and J. O. McIntyre. 2007. Noninvasive detection of matrix metalloproteinase activity in vivo using a novel magnetic resonance imaging contrast agent with a solubility switch. Molecular Imaging 6 (6):393–403.

    CAS  PubMed  Google Scholar 

  • Liotta, L. A., K. Tryggvason, S. Garbisa, I. Hart, C. M. Foltz, and S. Shafie. 1980. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–8.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin, C., and L. M. Matrisian. 2007. Emerging roles of proteases in tumour suppression. Nature Reviews Cancer 7 (10):800–8.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin, C., and C. M. Overall. 2002. Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology 3 (7):509–19.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, U., and R. Weissleder. 2003. Near-infrared optical imaging of proteases in cancer. Molecular Cancer Therapeutics 2 (5):489–96.

    CAS  PubMed  Google Scholar 

  • Marten, K., C. Bremer, K. Khazaie, M. Sameni, B. Sloane, C. H. Tung, and R. Weissleder. 2002. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122 (2):406–14.

    Article  PubMed  Google Scholar 

  • McIntyre, J. O., B. Fingleton, K. S. Wells, D. W. Piston, C. C. Lynch, S. Gautam, and L. M. Matrisian. 2004. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochemical Journal 377 (Pt 3):617–28.

    CAS  PubMed  Google Scholar 

  • McIntyre, J. O., and L. M. Matrisian. 2003. Molecular imaging of proteolytic activity in cancer. Journal of Cellular Biochemistry 90 (6):1087–97.

    Article  CAS  PubMed  Google Scholar 

  • Melnikova, V., and M. Bar-Eli. 2007. Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Reviews 26 (3–4):359–71.

    CAS  PubMed  Google Scholar 

  • Minond, D., J. L. Lauer-Fields, M. Cudic, C. M. Overall, D. Pei, K. Brew, M. L. Moss, and G. B. Fields. 2007. Differentiation of secreted and membrane-type matrix metalloproteinase activities based on substitutions and interruptions of triple-helical sequences. Biochemistry 46 (12):3724–33.

    Article  CAS  PubMed  Google Scholar 

  • Montet, X., J. L. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder. 2007. Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242 (3):751–8.

    Article  PubMed  Google Scholar 

  • Netzel-Arnett, S., J. D. Hooper, R. Szabo, E. L. Madison, J. P. Quigley, T. H. Bugge, and T. M. Antalis. 2003. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Review 22 (2–3):237–58.

    Article  CAS  Google Scholar 

  • Nioka, S., and B. Chance. 2005. NIR spectroscopic detection of breast cancer. Technology in Cancer Research and Treatment 4 (5):497–512.

    CAS  PubMed  Google Scholar 

  • Ntziachristos, V., C. H. Tung, C. Bremer, and R. Weissleder. 2002. Fluorescence molecular tomography resolves protease activity in vivo. Nature Medicine 8 (7):757–60.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski, R. Z., and D. J. Kuhn. 2008. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clinical Cancer Research 14 (6):1649–57.

    Article  CAS  PubMed  Google Scholar 

  • Ovaa, H., B. M. Kessler, U. Rolen, P. J. Galardy, H. L. Ploegh, and M. G. Masucci. 2004. Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proceedings of the National Academy of Sciences of the United States of America 101 (8):2253–8.

    Google Scholar 

  • Overall, C. M., and R. A. Dean. 2006. Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Reviews 25 (1):69–75.

    Article  PubMed  Google Scholar 

  • Pham, W., Y. Choi, R. Weissleder, and C. H. Tung. 2004. Developing a peptide-based near-infrared molecular probe for protease sensing. Bioconjugate Chemistry 15 (6):1403–7.

    Article  CAS  PubMed  Google Scholar 

  • Powers, J. C., J. L. Asgian, O. D. Ekici, and K. E. James. 2002. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chemical Reviews 102 (12):4639–750.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings, N. D., F. R. Morton, C. Y. Kok, J. Kong, and A. J. Barrett. 2008. MEROPS: the peptidase database. Nucleic Acids Research 36 (Database issue):D320–5.

    Google Scholar 

  • Rochefort, H., M. Garcia, M. Glondu, V. Laurent, E. Liaudet, J. M. Rey, and P. Roger. 2000. Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clinica Chimica Acta 291 (2):157–70.

    Article  CAS  Google Scholar 

  • Rocks, N., G. Paulissen, M. El Hour, F. Quesada, C. Crahay, M. Gueders, J. M. Foidart, A. Noel, and D. Cataldo. 2008. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90 (2):369–79.

    Article  CAS  PubMed  Google Scholar 

  • Rudin, M., and R. Weissleder. 2003. Molecular imaging in drug discovery and development. Nature Reviews. Drug Discovery 2 (2):123–31.

    Article  CAS  PubMed  Google Scholar 

  • Sadaghiani, A. M., S. H. Verhelst, and M. Bogyo. 2007a. Tagging and detection strategies for activity-based proteomics. Current Opinion in Chemical Biology 11 (1):20–8.

    Article  CAS  PubMed  Google Scholar 

  • Sadaghiani, A. M., S. H. Verhelst, V. Gocheva, K. Hill, E. Majerova, S. Stinson, J. A. Joyce, and M. Bogyo. 2007b. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chemical Biology 14 (5):499–511.

    Article  CAS  Google Scholar 

  • Saghatelian, A., N. Jessani, A. Joseph, M. Humphrey, and B. F. Cravatt. 2004. Activity-based probes for the proteomic profiling of metalloproteases. Proceedings of the National Academy of Sciences of the United States of America 101 (27):10000–5.

    Google Scholar 

  • Scherer, R. L., J. O. McIntyre, and L. M. Matrisian. 2008a. Imaging matrix metalloproteinases in cancer. Cancer Metastasis Reviews 27(4):679–690.

    Google Scholar 

  • Scherer, R. L., M. N. VanSaun, J. O. McIntyre, and L. M. Matrisian. 2008b. Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Molecular Imaging 7(3):118–131.

    CAS  PubMed  Google Scholar 

  • Schmidinger, H., A. Hermetter, and R. Birner-Gruenberger. 2006. Activity-based proteomics: enzymatic activity profiling in complex proteomes. Amino Acids 30 (4):333–50.

    Article  CAS  PubMed  Google Scholar 

  • Sica, A., P. Allavena, and A. Mantovani. 2008. Cancer related inflammation: the macrophage connection. Cancer Letters 267(2):204–215.

    Google Scholar 

  • Sieber, S. A., S. Niessen, H. S. Hoover, and B. F. Cravatt. 2006. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nature Chemical Biology 2 (5):274–81.

    Article  CAS  PubMed  Google Scholar 

  • Sloane, B. F., M. Sameni, I. Podgorski, D. Cavallo-Medved, and K. Moin. 2006. Functional imaging of tumor proteolysis. Annual Review of Pharmacology and Toxicology 46:301–15.

    Article  CAS  PubMed  Google Scholar 

  • Speers, A. E., and B. F. Cravatt. 2004. Chemical strategies for activity-based proteomics. Chembiochem: A European Journal of Chemical Biology 5 (1):41–7.

    Article  CAS  Google Scholar 

  • Tsien, R. Y. 2005. Building and breeding molecules to spy on cells and tumors. FEBS Letters 579 (4):927–32.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, R., R. A. Sheth, R. Weissleder, and U. Mahmood. 2007. Quantitative real-time catheter-based fluorescence molecular imaging in mice. Radiology 245 (2):523–31.

    Article  PubMed  Google Scholar 

  • Van de Wiele, C., and R. Oltenfreiter. 2006. Imaging probes targeting matrix metalloproteinases. Cancer Biotherapy & Radiopharmaceuticals 21 (5):409–17.

    Article  Google Scholar 

  • Vasiljeva, O., A. Papazoglou, A. Kruger, H. Brodoefel, M. Korovin, J. Deussing, N. Augustin, B. S. Nielsen, K. Almholt, M. Bogyo, C. Peters, and T. Reinheckel. 2006. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Research 66 (10):5242–50.

    Article  CAS  PubMed  Google Scholar 

  • Weissleder, R., C. H. Tung, U. Mahmood, and A. Bogdanov, Jr. 1999. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology 17 (4):375–8.

    Article  CAS  PubMed  Google Scholar 

  • Weissleder, R., and V. Ntziachristos. 2003. Shedding light onto live molecular targets. Nature Medicine 9 (1):123–8.

    Article  CAS  PubMed  Google Scholar 

  • Weissleder, R., and M. J. Pittet. 2008. Imaging in the era of molecular oncology. Nature 452 (7187):580–9.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C. L., K. J. Heppner, P. A. Labosky, B. L. M. Hogan, and L. M. Matrisian. 1997. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proceedings of the National Academy of Sciences of the United States of America 94 (4):1402–407.

    Google Scholar 

  • Witty, J. P., S. McDonnell, K. Newell, P. Cannon, M. Navre, R. Tressler, and L. M. Matrisian. 1994. Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Research 54:4805–12.

    CAS  PubMed  Google Scholar 

  • Woessner, J. F., and H. Nagase. 2000. Matrix Metalloproteinases and TIMPs. New York: Oxford University Press Inc.

    Google Scholar 

  • Zheng, G., J. Chen, K. Stefflova, M. Jarvi, H. Li, and B. C. Wilson. 2007. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proceedings of the National Academy of Sciences of the United States of America 104 (21):8989–94.

    Google Scholar 

  • Zhu, Q., E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu. 2005. Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction. Radiology 237 (1):57–66.

    Article  PubMed  Google Scholar 

  • Zuzak, K. J., M. D. Schaeberle, E. N. Lewis, and I. W. Levin. 2002. Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion. Analytical Chemistry 74 (9):2021–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Randy Scherer for the images of tumors and adenomas with proteolytic beacons. This work was supported by National Institutes of Health grant CA60867 to L.M.M., grant P30 068485 to the Vanderbilt-Ingram Cancer Center, and grant U24 CA126588, the Southeastern Center for Imaging Animal Models, Vanderbilt University Institute of Imaging Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oliver McIntyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oliver McIntyre, J., Matrisian, L.M. (2010). Proteinase Optical Imaging Tools for Cancer Detection and Response to Therapy. In: Rosenthal, E., Zinn, K. (eds) Optical Imaging of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-93874-5_7

Download citation

Publish with us

Policies and ethics