Skip to main content

Optical Imaging of Matrix Metalloproteinases Activity in Prostate Tumors in Mice

  • Protocol
  • First Online:
Cancer Biomarkers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2413))

Abstract

The molecular characterization of cancer could have significant clinical benefits, including early diagnosis, making treatment decisions, and monitoring therapeutic response. In this regard, noninvasive assessment of expression/activity of specific molecules in tumors could be vital in managing cancer. Optical probes have demonstrated promise in the molecular imaging of cancer. Here, we have described a method to noninvasively assess the activity of matrix metalloproteinases (MMPs) in human prostate tumors in mice. We used an activatable probe MMPSense™ 750 FAST (MMPSense750) with fluorescent properties in the near-infrared (NIR) range with peak excitation at ~749 nm and peak emission ~775 nm. These optical properties offer the advantage of a higher depth of detection. This probe has shown immense potential in imaging MMPs activity in deeper tissue with high target-specific signal and low background autofluorescence. Therefore, this probe could be valuable in assessing MMPs activity in primary tumors and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuna JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML (2020) The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci 21(24):9739. https://doi.org/10.3390/ijms21249739

    Article  CAS  PubMed Central  Google Scholar 

  2. Caley MP, Martins VL, O’Toole EA (2015) Metalloproteinases and wound healing. Adv Wound Care (New Rochelle) 4(4):225–234. https://doi.org/10.1089/wound.2014.0581

    Article  Google Scholar 

  3. Goetzl EJ, Banda MJ, Leppert D (1996) Matrix metalloproteinases in immunity. J Immunol 156(1):1–4

    CAS  PubMed  Google Scholar 

  4. Khokha R, Murthy A, Weiss A (2013) Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 13(9):649–665. https://doi.org/10.1038/nri3499

    Article  CAS  PubMed  Google Scholar 

  5. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15(1):35–44. S1535-6108(08)00378-4 [pii]. https://doi.org/10.1016/j.ccr.2008.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293. https://doi.org/10.1038/nrc2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. nature04186 [pii]. https://doi.org/10.1038/nature04186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4):289–300

    Article  CAS  Google Scholar 

  9. Gonzalez-Avila G, Sommer B, Garcia-Hernandez AA, Ramos C (2020) Matrix Metalloproteinases’ role in tumor microenvironment. Adv Exp Med Biol 1245:97–131. https://doi.org/10.1007/978-3-030-40146-7_5

    Article  CAS  PubMed  Google Scholar 

  10. Quintero-Fabian S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argaez V, Lara-Riegos J, Ramirez-Camacho MA, Alvarez-Sanchez ME (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370. https://doi.org/10.3389/fonc.2019.01370

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27. https://doi.org/10.1111/j.1742-4658.2010.07919.x

    Article  CAS  PubMed  Google Scholar 

  12. Deep G, Jain A, Kumar A, Agarwal C, Kim S, Leevy WM, Agarwal R (2020) Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches. Mol Carcinog 59(3):323–332. https://doi.org/10.1002/mc.23157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barber PA, Rushforth D, Agrawal S, Tuor UI (2012) Infrared optical imaging of matrix metalloproteinases (MMPs) up-regulation following ischemia reperfusion is ameliorated by hypothermia. BMC Neurosci 13:76. https://doi.org/10.1186/1471-2202-13-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L, Du Y, Chen X, Tian J (2018) Fluorescence molecular imaging and tomography of matrix metalloproteinase-activatable near-infrared fluorescence probe and image-guided orthotopic glioma resection. Mol Imaging Biol 20(6):930–939. https://doi.org/10.1007/s11307-017-1158-7

    Article  CAS  PubMed  Google Scholar 

  15. Cho H, Bhatti FU, Lee S, Brand DD, Yi AK, Hasty KA (2016) In vivo dual fluorescence imaging to detect joint destruction. Artif Organs 40(10):1009–1013. https://doi.org/10.1111/aor.12685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waschkau B, Faust A, Schafers M, Bremer C (2013) Performance of a new fluorescence-labeled MMP inhibitor to image tumor MMP activity in vivo in comparison to an MMP-activatable probe. Contrast Media Mol Imaging 8(1):1–11. https://doi.org/10.1002/cmmi.1486

    Article  CAS  PubMed  Google Scholar 

  17. Singh RP, Raina K, Deep G, Chan D, Agarwal R (2009) Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clin Cancer Res 15(2):613–621. https://doi.org/10.1158/1078-0432.CCR-08-1846

Download references

Acknowledgments

We acknowledge the support provided by DOD awards # W81XWH-15-1-0188; # W81XWH-19-1-0427 (to GD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagan Deep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, S., Deep, G. (2022). Optical Imaging of Matrix Metalloproteinases Activity in Prostate Tumors in Mice. In: Deep, G. (eds) Cancer Biomarkers. Methods in Molecular Biology, vol 2413. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1896-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1896-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1895-0

  • Online ISBN: 978-1-0716-1896-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics