Skip to main content

Gap Junctions as Electrical Synapses

  • Chapter
  • First Online:
The Sticky Synapse

Abstract

Gap junctions form between many cell types. Between neurons, they constitute one class of electrical synapses. Gap junctions are aggregates of membrane channels between the conjoined cells and in mammals they are comprised of connexins, which are encoded by a gene family that has 21 members in humans. Each of the coupled cells contributes a hemichannel to each cell–cell channel. Channel turnover can occur within hours, or channels may last a lifetime. Not all connexins will form channels with every other connexin, and connexin compatibility is one limit on junction formation. Other mechanisms including cell attachment and recognition molecules contribute to specificity of gap junction formation. Electrical synapses are characterized by specificity, but mistakes, i.e., inappropriate connections, are sometimes made. Pannexins/innexins form gap junctions in invertebrates, but apparently only hemichannels in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S and Evans WH (2002) Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: implications for the assembly of gap junctions. Biochem J 365:693–699

    PubMed  CAS  Google Scholar 

  • Altevogt BM and Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323

    Article  PubMed  CAS  Google Scholar 

  • Bartos M, Vida I and Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL (1972) Electrical vs. chemical neurotransmission. In: Neurotransmitters. A.R.N.M.D 50:58–89

    CAS  Google Scholar 

  • Bennett MVL (1973) Permeability and structure of electrotonic junctions and intercellular movement of tracers. In: Kater SB and Nicholson C (eds) Intracellular staining techniques in neurobiology, Springer, New York, pp. 115–133

    Google Scholar 

  • Bennett MVL (1977) Electrical transmission: a functional analysis and comparison with chemical transmission. In: Kandel ER (ed) Cellular biology of neurons Vol. I, Sec. I, Handbook of Physiology. The nervous system, Williams and Wilkins, Baltimore, pp. 357–416

    Google Scholar 

  • Bennett MVL (2009) Gap junctions and electrical synapses. In: Squire LR (ed.) Encyclopedia of Neuroscience, vol. 4, pp. 529–548, Oxford, Academic Press

    Google Scholar 

  • Bennett MVL, Contreras JE, Bukauskas FF et al. (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617

    Article  PubMed  CAS  Google Scholar 

  • Bennett MV, Pappas GD, Aljure E et al. (1967) Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol 30:180–208

    PubMed  CAS  Google Scholar 

  • Bennett MVL and Pereda A (2006) Pyramid power: principal cells of the hippocampus unite! Brain Cell Biol 35:5–11

    Article  PubMed  Google Scholar 

  • Bennett MVL and Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ et al. (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Bukauskas FF (2001) Inducing de novo formation of gap junction channels. Methods Mol Biol 154:379–393

    PubMed  CAS  Google Scholar 

  • Bukauskas FF, Jordan K, Bukauskiene A et al. (2000) Clustering of connexin 43-enhanced green fluorescent protein gap junction channels and functional coupling in living cells. Proc Natl Acad Sci USA 97:2556–2561

    Article  PubMed  CAS  Google Scholar 

  • Bukauskas FF, Kreuzberg MM, Rackauskas M et al. (2006) Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA 103:9726–9731

    Article  PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ et al. (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  • Butts DA, Kanold PO and Shatz CJ (2007) A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol 5:e61

    Article  PubMed  CAS  Google Scholar 

  • Christie JM and Westbrook GL (2006) Lateral excitation within the olfactory bulb. J Neurosci 26:2269–2277

    Article  PubMed  CAS  Google Scholar 

  • Coleman AM and Sengelaub DR (2002) Patterns of dye coupling in lumbar motor nuclei of the rat. J Comp Neurol 454:34–41

    Article  PubMed  Google Scholar 

  • Connors BW and Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Article  PubMed  CAS  Google Scholar 

  • Cotrina ML, Lin JH and Nedergaard M (2008) Adhesive properties of connexin hemichannels. Glia 56:1791–1798

    Article  PubMed  CAS  Google Scholar 

  • Cruikshank SJ, Landisman CE, Mancilla JG et al. (2005) Connexon connexions in the thalamocortical system. Prog Brain Res 149:41–57

    Article  PubMed  Google Scholar 

  • Elias LA, Wang DD and Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448:901–907

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Kosaka T, Singer W et al. (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26:3434–3443

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T and Kosaka T (2000) The dual network of GABAergic interneurons linked by both chemical and electrical synapses: a possible infrastructure of the cerebral cortex. Neurosci Res 38:123–130

    Article  PubMed  CAS  Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR et al. (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M and Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  PubMed  CAS  Google Scholar 

  • Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245

    Article  PubMed  CAS  Google Scholar 

  • Gumpert AM, Varco JS, Baker SM et al. (2008) Double-membrane gap junction internalization requires the clathrin-mediated endocytic machinery. FEBS Lett 582:2887–2892

    Article  PubMed  CAS  Google Scholar 

  • Houades V, Koulakoff A, Ezan P et al. (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217

    Article  PubMed  CAS  Google Scholar 

  • Isaac JT (2003) Postsynaptic silent synapses: evidence and mechanisms. Neuropharmacology 45:450–460

    Article  PubMed  CAS  Google Scholar 

  • Kerchner GA and Nicoll RA (2008) Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 9:813–825

    Article  PubMed  CAS  Google Scholar 

  • Kleopa KA, Orthmann JL, Enriquez A et al. (2004) Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47:346–357

    Article  PubMed  Google Scholar 

  • Korn H, Sotelo C and Crepel F (1973) Electronic coupling between neurons in the rat lateral vestibular nucleus. Exp Brain Res 16:255–275

    Article  PubMed  CAS  Google Scholar 

  • Koval M (2006) Pathways and control of connexin oligomerization. Trends Cell Biol 16:159–166

    Article  PubMed  CAS  Google Scholar 

  • Kreuzberg MM, Deuchars J, Weiss E et al. (2008) Expression of connexin30.2 in interneurons of the central nervous system in the mouse. Mol Cell Neurosci 37:119–134

    Article  PubMed  CAS  Google Scholar 

  • Lane NJ and Swales LS (1978) Changes in the blood-brain barrier of the central nervous system in the blowfly during development, with special reference to the formation and disaggregation of gap and tight junctions. Dev Biol 62:415–431

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ionescu AV, Lynn BD et al. (2004) Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience 126:611–630

    Article  PubMed  CAS  Google Scholar 

  • MacVicar BA and Dudek FE (1981) Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 213:782–785

    Article  PubMed  CAS  Google Scholar 

  • Mann-Metzer P and Yarom Y. (2000) Electrotonic coupling synchronizes interneuron activity in the cerebellar cortex. Prog Brain Res 124:115–122

    Article  PubMed  CAS  Google Scholar 

  • Maxeiner S, Krüger O, Schilling K et al. (2003) Spatiotemporal transcription of connexin45 during brain development results in neuronal expression in adult mice. Neuroscience 119:689–700

    Article  PubMed  CAS  Google Scholar 

  • Mazet F, Wittenberg BA and Spray DC (1985) Fate of intercellular junctions in isolated adult rat cardiac cells. Circ Res 56:195–204

    PubMed  CAS  Google Scholar 

  • Maeda S, Nakagawa S, Suga M et al. (2009) Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458:597–602

    Google Scholar 

  • Mege RM, Matsuzaki F, Gallin WJ et al. (1988) Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc Natl Acad Sci USA 85:7274–7278

    Article  PubMed  CAS  Google Scholar 

  • Mercer A, Bannister AP and Thomson AM (2006) Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Biol 35:13–27

    Article  PubMed  Google Scholar 

  • Meszler RM, Pappas GD and Bennett VL (1974) Morphology of the electromotor system in the spinal cord of the electric eel, Electrophorus electricus. J Neurocytol 3:251–261

    Article  PubMed  CAS  Google Scholar 

  • Meyer RA, Laird DW, Revel JP et al. (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol 119:179–189

    Article  PubMed  CAS  Google Scholar 

  • Müller DJ, Hand GM, Engel A et al. (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21:3598–3607

    Article  PubMed  Google Scholar 

  • Musil LS and Goodenough DA (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Nagy JI, Dudek FE and Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47(1–3):191–215

    Article  PubMed  CAS  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD et al. (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y (1974) Fine structure of the synaptic endings on the Mauthner cell of the goldfish. J Comp Neurol 156:379–402

    PubMed  CAS  Google Scholar 

  • Ogata K and Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233

    Article  PubMed  CAS  Google Scholar 

  • Oliveira R, Christov C, Guillamo JS et al. (2005) Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol 6:7

    Article  PubMed  CAS  Google Scholar 

  • Orthmann-Murphy JL, Freidin M, Fischer E et al. (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27:13949–13957

    Article  PubMed  CAS  Google Scholar 

  • Pappas GD, Asada Y and Bennett MVL (1971) Morphological correlates of increased coupling resistance at an electrotonic synapse. J Cell Biol 49:173–188

    Article  PubMed  CAS  Google Scholar 

  • Peinado A, Yuste R and Katz LC (1993) Gap junctional communication and the development of local circuits in neocortex. Cereb Cortex 3:488–498

    Article  PubMed  CAS  Google Scholar 

  • Pereda AE, Rash JE, Nagy JI et al. (2004) Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Res Brain Res Rev 47:227–244

    Article  PubMed  CAS  Google Scholar 

  • Pimentel DO and Margrie TW (2008) Glutamatergic transmission and plasticity between olfactory bulb mitral cells. J Physiol 586:2107–2119

    Article  PubMed  CAS  Google Scholar 

  • Preus D, Johnson R, Sheridan J et al. (1981) Analysis of gap junctions and formation plaques between reaggregating Novikoff hepatoma cells. J Ultrastruct Res 77:263–276

    Article  PubMed  CAS  Google Scholar 

  • Prochnow N and Dermietzel R (2008) Connexons and cell adhesion: a romantic phase. Histochem Cell Biol 130:71–77

    Article  PubMed  CAS  Google Scholar 

  • Prowse DM, Cadwallader GP and Pitts JD (1997) E-cadherin expression can alter the specificity of gap junction formation. Cell Biol Int 21:833–843

    Article  PubMed  CAS  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE et al. (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U et al. (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Staines WA, Yasumura T et al. (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA 97:7573–7578

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Davidson KG, Kamasawa N et al. (2005) Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. J Neurocytol 34:307–341

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Olson CO, Davidson KG et al. (2007a) Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience 147:938–956

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Olson CO, Pouliot WA et al. (2007b) Connexin36 vs. connexin32, “miniature” neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus. Neuroscience 149:350–371

    Article  PubMed  CAS  Google Scholar 

  • Raviola E and Gilula NB (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci USA 70:1677–1681

    Google Scholar 

  • Sasakura Y, Shoguchi E, Takatori N et al. (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. X. Genes for cell junctions and extracellular matrix. Dev Genes Evol 213:303–313

    Article  PubMed  CAS  Google Scholar 

  • Scemes E, Suadicani SO, Dahl G et al. (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208

    Article  PubMed  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314: 941–952

    Article  Google Scholar 

  • Segretain D and Falk MM (2004) Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 1662:3–21

    Article  PubMed  CAS  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA et al. (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    Article  PubMed  CAS  Google Scholar 

  • Shestopalov VI and Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394

    Article  PubMed  CAS  Google Scholar 

  • Simpson I, Rose B and Loewenstein WR (1977) Size limit of molecules permeating the junctional membrane channels. Science 195:294–296

    Article  PubMed  CAS  Google Scholar 

  • Söhl G and Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  PubMed  CAS  Google Scholar 

  • Thomas MA, Huang S, Cokoja A et al. (2002) Interaction of connexins with protein partners in the control of channel turnover and gating. Biol Cell 94:445–456

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Jordan K and Laird DW (2001) Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions. Cell Commun Adhes 8:231–236

    Article  PubMed  CAS  Google Scholar 

  • Toyoda A, Bronner-Fraser M, Fujiyama A et al. (2008) The amphioxus genome and the evolution of the chordate karyotype Nature 453:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Trexler EB, Li W, Mills SL et al. (2001) Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. J Comp Neurol 437:408–422

    Article  PubMed  CAS  Google Scholar 

  • Tuttle R, Masuko S and Nakajima Y (1986) Freeze-fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: special reference to the quantitative analysis of gap junctions. J Comp Neurol 246:202–211

    Article  PubMed  CAS  Google Scholar 

  • VanSlyke JK and Musil LS (2005) Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function. Mol Biol Cell 16:5247–5257

    Article  PubMed  CAS  Google Scholar 

  • Wei CJ, Francis R, Xu X et al. (2005) Connexin43 associated with an N-cadherin-containing multiprotein complex is required for gap junction formation in NIH3T3 cells. J Biol Chem 280:19925–19936

    Article  PubMed  CAS  Google Scholar 

  • White TW, Wang H, Mui R et al. (2004) Cloning and functional expression of invertebrate connexins from Halocynthia pyriformis. FEBS Lett 577:42–48

    Article  PubMed  CAS  Google Scholar 

  • Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22:29–47

    Article  PubMed  CAS  Google Scholar 

  • Yamane Y, Shiga H, Asou H et al. (1999) Dynamics of astrocyte adhesion as analyzed by a combination of atomic force microscopy and immuno-cytochemistry: the involvement of actin filaments and connexin 43 in the early stage of adhesion. Arch Histol Cytol 6:355–361

    Article  Google Scholar 

  • Yen MR and Saier MH Jr (2007) Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog Biophys Mol Biol 94:5–14

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Nelson DA, Rubin WW et al. (1995) Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14:7–17

    Article  PubMed  CAS  Google Scholar 

  • Zhang JT, Chen M, Foote CI et al. (1996) Membrane integration of in vitro-translated gap junctional proteins: co- and post-translational mechanisms. Mol Biol Cell 7:471–482

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Eskandari S and Kreman M (2000) Epithelial organization of the mammalian lens. Exp Eye Res 71:415–435

    Article  PubMed  CAS  Google Scholar 

  • Zhang JT, Chen M, Foote CI et al. (1996) Membrane integration of in vitro-translated gap junctional proteins: co- and post-translational mechanisms. Mol Biol Cell 7:471–482

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. L. Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garré, J.M., Bennett, M.V.L. (2009). Gap Junctions as Electrical Synapses. In: Umemori, H., Hortsch, M. (eds) The Sticky Synapse. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92708-4_21

Download citation

Publish with us

Policies and ethics