Skip to main content
Log in

Electrical coupling between pyramidal cells in adult cortical regions

  • Research Article
  • Published:
Brain Cell Biology

Abstract

Recently, intense interest has focussed on electrical coupling between interneurones in cortical regions and their contributions towards oscillatory network activity. Despite mounting circumstantial evidence that pyramidal cells are also coupled, the paucity of direct evidence has made this controversial. Dual intracellular recordings from pairs of cortical and hippocampal pyramids demonstrated strong, but sparse coupling. Approximately 70% of CA1 pyramids close to the stratum radiatum border were coupled to another pyramid, but only to one or two of their very closest neighbours. On average 25% of the steady state and 10% of the peak action potential voltage change in one cell transferred to the other, supporting synchrony and promoting burst firing. The very high incidence of convergent inputs from coupled pyramids onto single targets provided additional evidence that ‘spikelets’ reflected full action potentials in a coupled cell, since the EPSPs activated by APs and by ‘spikelets’ had significantly different amplitude distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, A. B., Deuchars, J., Pawelzik, H., and Thomson, A. M. (1998). CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J. Physiol. 507, 201–217.

    Article  PubMed  CAS  Google Scholar 

  • Baimbridge, K. G., Peet, M. J., McLennan, H., and Church, J. (1991). Bursting response to current- evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k. Synapse 7, 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Beierlein, M., Gibson, J. R., and Connors, B. W. (2000). A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3, 904–910.

    Article  PubMed  CAS  Google Scholar 

  • Beierlein, M., Gibson, J. R., and Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J. Neurophysiol. 90, 2987–3000

    Article  PubMed  Google Scholar 

  • Bruzzone, R., Barbe, M. T., Jakob, N. J., and Monyer, H. (2005). Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J. Neurochem. 92, 1033–1043.

    Article  PubMed  CAS  Google Scholar 

  • Church, J. and Baimbridge, K. G. (1991). Exposure to high-pH medium increases the incidence and extent of dye coupling between rat hippocampal CA1 pyramidal neurons in vitro. J. Neurosci. 11, 3289–3295

    PubMed  CAS  Google Scholar 

  • Deuchars, J. and Thomson, A. M. (1996). CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74, 1009–1018

    PubMed  CAS  Google Scholar 

  • Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W., and Paul, D. L. (2001). Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Draguhn, A. Traub, R. D., Schmitz, D. and Jefferys, J. G. R. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394, 189–192

    Article  PubMed  CAS  Google Scholar 

  • Galarreta, M. and Hestrin, S. (2002). Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc. Natl. Acad. Sci. U.S.A. 99, 12438–12443

    Article  PubMed  CAS  Google Scholar 

  • Galarreta, M., Erdelyi, F., Szabo, G., and Hestrin, S. (2004). Electrical coupling among irregular- spiking GABAergic interneurons expressing cannabinoid receptors. J. Neurosci. 24, 9770–9778.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, J. R., Beierlein, M., Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, J. R., Beierlein, M., and Connors, B. W. (2005). Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4. J. Neurophysiol. 93, 467–480.

    Article  PubMed  Google Scholar 

  • Gutnick, M. J. and Prince, D. A. (1981). Dye coupling and possible electrotonic coupling in the guinea pig neocortical slice. Science 21, 67–70

    Article  Google Scholar 

  • Hamzel-Sichani, F., Janssen, W. G., Hof, P. R., Wearne, S. L., Stewart, M. G., Whittington, M. A., and Traub, R. D. (2006). Gap junctions couple hippocampal mossy fiber axons to each other and to CA3 pyramidal cell dendrites. Abstract Viewer and Itinerary Planner. Washington, DC: Society for Neuroscience, 2006. 132.9 Online

  • Hormuzdi, S. G., Pais, I., LeBeau, F. E., Towers, S. K., Rozov, A., Buhl, E. H., Whittington, M. A., and Monyer, H. (2001). Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31, 487–495

    Article  PubMed  CAS  Google Scholar 

  • Hughes, D. I., Bannister, A. P., Pawelzik, H., and Thomson, A. M. (2000). Double immuno-fluorescence, peroxidase labelling and ultrastructural analysis of interneurones following prolonged electrophysiological recordings in vitro. J. Neurosci. Meth. 101, 107–116.

    Article  CAS  Google Scholar 

  • Long, M. A., Cruikshank, S. J., Jutras, M. J., and Connors, B. W. (2005). Abrupt maturation of a spike-synchronizing mechanism in neocortex. J. Neurosci. 25, 7309–7316.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B. A. and Dudek, F. E. (1981). Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 213, 782–785.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B. A. and Dudek, F. E. (1980). Dye-coupling between CA3 pyramidal cells in slices of rat hippocampus. Brain Res. 196, 494–497.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B. A., Ropert, N., and Krnjevic, K. (1982). Dye-coupling between pyramidal cells of rat hippocampus in vivo. Brain Res. 238, 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J. I., Dudek, F. E., Rash, J. E. (2004). Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain. Res. Brain Res. Rev. 47, 191–215.

    Article  PubMed  CAS  Google Scholar 

  • Pawelzik, H., Hughes, D. I., and Thomson, A. M. (2002). Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–67.

    Article  PubMed  Google Scholar 

  • Schmitz, D., Schuchmann, S., Fisahn, A., Draguhn, A., Buhl, E. H., Petrasch-Parwez, E., Dermietzel, R., Heinemann, U., Traub, R. D. (2001). Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840.

    Article  PubMed  CAS  Google Scholar 

  • Simon, A., Olah, S., Molnar, G., Szabadics, J., and Tamas, G. (2005). Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J. Neurosci. 25, 6278–6285.

    Article  PubMed  CAS  Google Scholar 

  • Tamas, G., Buhl, E. H., Lorincz, A., and Somogy, I. P. (2000). Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat. Neurosci. 3, 366–371.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M. and Bannister, A. P. (2004). Electrical gap junctions involving somata and axons of neocortical and hippocampal pyramidal cells 403.13 2004. Abstract Viewer and Itinerary Planner. Washington, DC: Society for Neuroscience (Online).

  • Thomson, A. M. and Radpour, S. (1991). Excitatory connections between CA1 pyramidal cells revealed by spike triggered averaging in slices of rat hippocampus are partially NMDA receptor mediated. Europ. J. Neurosci. 3, 587–601

    Article  Google Scholar 

  • Thomson, A. M. and West, D. C. (2003). Presynaptic frequency filtering in the gamma frequency band; dual intracellular recordings in slices of adult rat and cat neocortex Cereb. Cortex 13, 136–143.

    Article  Google Scholar 

  • Vogt, A., Hormuzdi, S. G., and Monyer, H. (2005). Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res. Mol. Brain Res. 141, 113–120.

    Article  PubMed  CAS  Google Scholar 

  • West, D. C., Mercer, A., Kirchhecker, S., Morris, O. T., and Thomson, A. M. (2006). Layer 6 cortico- thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. Cereb. Cortex 16, 200–211.

    Article  PubMed  Google Scholar 

  • Zsiros, V. and Maccaferri, G. (2005). Electrical coupling between interneurons with different excitable properties in the stratum lacunosum-moleculare of the juvenile CA1 rat hippocampus. J. Neurosci. 25, 8686–8695.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex M. Thomson.

Additional information

Audrey Mercer and Peter Bannister made equal contributions to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercer, A., Bannister, A.P. & Thomson, A.M. Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell Bio 35, 13–27 (2006). https://doi.org/10.1007/s11068-006-9005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-006-9005-9

Keywords

Navigation