Skip to main content

Tropospheric New Particle Formation and the Role of Ions

  • Chapter
Planetary Atmospheric Electricity

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 30))

Abstract

Aerosol particles play an important role in the Earth’s troposphere and in the climate system: They scatter and absorb solar radiation, facilitate chemical processes, and serve as condensation nuclei for the formation of clouds. Tropospheric aerosol particles are emitted from surface sources or form in situ from the gas phase. Formation from the gas phase requires concentrations of aerosol precursor molecules aggregating to form molecular clusters able to grow faster than they evaporate. This process is called nucleation. Gas phase ions can reduce the concentration of aerosol precursor molecules required for nucleation, as they greatly stabilize molecular clusters with respect to evaporation. Therefore, ions are a potential source of aerosol particles. Since atmospheric ionization carries the signal of the decadal solar cycle due to the modulation of the galactic cosmic ray intensity by solar activity, a possible connection between the solar cycle, galactic cosmic rays, aerosols, and clouds has been a long-standing focus of interest. In this paper, we provide an overview of theoretical, modeling, laboratory, and field work on the role and relevance of ions for the formation of tropospheric aerosol particles, and on subsequent effects on clouds, and discuss briefly related research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • B.A. Albrecht, Aerosols, cloud microphysics and fractional cloudiness. Science 245, 1227–1230 (1989)

    Article  ADS  Google Scholar 

  • J.D. Allan, M.R. Alfarra, K.N. Bower, H. Coe, J.T. Jayne, D.R. Worsnop, P.P. Aalto, M. Kulmala, T. Hyötyläinen, F. Cavalli, A. Laaksonen, Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer. Atmos. Chem. Phys. 6, 315–327 (2006)

    Article  ADS  Google Scholar 

  • T. Anttila, H. Vehkamäki, I. Napari, M. Kulmala, Effect of ammonium bisulphate formation on atmospheric water-sulphuric acidammonia nucleation. Boreal Environ. Res. 10, 511–523 (2005)

    Google Scholar 

  • K.L. Aplin, R.G. Harrison, M.J. Rycroft, Investigation of Earth’s atmospheric electricity: a role model for planetary studies, Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • S.M. Ball, D.R. Hanson, F.L. Eisele, P.H. McMurry, Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors. J. Geophys. Res. 104, 23 709–23 718 (1999)

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, I.G. Usoskin, E. Flückiger, R.G. Harrison, L. Desorgher, R. Bütikofer, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, G.A. Kovaltsov, Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. (2008, this issue) doi:10.1007/s11214-008-9339-y

  • R. Becker, W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. d. Phys. 416, 719–752 (1935)

    Article  ADS  Google Scholar 

  • T. Berndt, O. Böge, F. Stratmann, J. Heintzenberg, M. Kulmala, Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 307, 698–700 (2005)

    Article  ADS  Google Scholar 

  • T. Berndt, O. Böge, F. Stratmann, Formation of atmospheric H2SO4/H2O particles in the absence of organics: A laboratory study. Geophys. Res. Lett. 33, L15817 (2006)

    Article  ADS  Google Scholar 

  • J. Bricard, F. Billard, G. Madelaine, Formation and evolution of nuclei of condensation that appear in air initially free of aerosols. J. Geophys. Res. 73, 4487–4496 (1968)

    Article  ADS  Google Scholar 

  • C.A. Brock, P. Hamill, J.C. Wilson, H.H. Jonsson, K.R. Chan, Particle formation in the upper tropical troposphere: a source of nuclei for the stratospheric aerosol. Science 270, 1650–1653 (1995)

    Article  ADS  Google Scholar 

  • J.B. Burkholder, T. Baynard, A.R. Ravishankara, E.R. Lovejoy, Particle nucleation following the O3 and OH initiated oxidation of α-pinene and β-pinene between 278 and 320 K. J. Geophys. Res. 112, 10216 (2007)

    Article  Google Scholar 

  • K.S. Carslaw, R.G. Harrison, J. Kirkby, Cosmic rays, clouds, and climate. Science 298, 1732–1737 (2002)

    Article  ADS  Google Scholar 

  • F. Cavalli, M.C. Facchini, S. Decesari, L. Emblico, M. Mircea, N.R. Jensen, S. Fuzzi, Size-segregated aerosol chemical composition at a boreal site in southern Finland, during the QUEST project. Atmos. Chem. Phys. 6, 993–1002 (2006)

    Article  ADS  Google Scholar 

  • W.J. Chesnavich, T. Su, M.T. Bowers, Collisions in a noncentral field: A variational and trajectory investigation of ion-dipole capture. J. Chem. Phys. 72, 2641–2655 (1980)

    Article  ADS  Google Scholar 

  • A.D. Clarke, Atmospheric nuclei in the remote free-troposphere. J. Atmos. Chem. 14, 479–488 (1992)

    Article  Google Scholar 

  • D.J. Coffman, D.A. Hegg, A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophys. Res. 100, 7147–7160 (1995)

    Article  ADS  Google Scholar 

  • J. Curtius, Nucleation of atmospheric aerosol particles. C.R. Phys. 7, 1027–1045 (2006)

    Article  ADS  Google Scholar 

  • J. Curtius, K.D. Froyd, E.R. Lovejoy, Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO 4 (H2SO4)(x)(HNO3)(y). J. Phys. Chem. A 105, 10867–10873 (2001)

    Article  Google Scholar 

  • R.E. Dickinson, Solar variability and the lower atmosphere. Bull. Am. Meteorol. Soc. 56, 1240–1248 (1975)

    Article  ADS  Google Scholar 

  • S. Eichkorn, S. Wilhelm, H. Aufmhoff, K.H. Wohlfrom, F. Arnold, Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys. Res. Lett. 29 (2002)

    Google Scholar 

  • F.L. Eisele, D.R. Hanson, First measurement of prenucleation molecular clusters. J. Phys. Chem. A 104, 830–836 (2000)

    Article  Google Scholar 

  • F.L. Eisele, E.R. Lovejoy, E. Kosciuch, K.F. Moore, R.L. Mauldin III, J.-N. Smith, P.H. McMurry, K. Iida, Negative atmospheric ions and their potential role in ion-induced nucleation. J. Geophys. Res. 111, D043053 (2006)

    Article  Google Scholar 

  • L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phys. Chem. 125, 236–242 (1927)

    Google Scholar 

  • S.E. Forbush, Worldwide cosmic ray variations, 1937–1952. J. Geophys. Res. 59, 525–542 (1954)

    Article  ADS  Google Scholar 

  • K.D. Froyd, Ion induced nucleation in the atmosphere: Studies of NH3, H2SO4, and H2O cluster ions. Ph.D. thesis, University of Colorado at Boulder, 2002

    Google Scholar 

  • K.D. Froyd, E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 1. Positive Ions. J. Phys. Chem. A 107, 9800–9811 (2003a)

    Article  Google Scholar 

  • K.D. Froyd, E.R. Lovejoy, Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Measurements and ab initio structures of negative ions. J. Phys. Chem. A 107, 9812–9824 (2003b)

    Article  Google Scholar 

  • P.L. Galison, Image and Logic: A Material Culture of Microphysics (University of Chicago Press, Chicago, 1997)

    Google Scholar 

  • D.R. Hanson, E.R. Lovejoy, Measurement of the thermodynamics of the hydrated dimer and trimer of sulfuric acid. J. Phys. Chem. A 110, 9525–9528 (2006)

    Article  Google Scholar 

  • R.G. Harrison, K.S. Carslaw, Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41 (2–1)–(2–26), (2003)

    Google Scholar 

  • R.G. Harrison, D.B. Stephenson, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc. R. Soc. A 462, 1221–1233 (2006)

    Article  MATH  ADS  Google Scholar 

  • U. Hõrrak, J. Salm, H. Tammet, Bursts of intermediate ions in atmospheric air. J. Geophys. Res. 103, 13909–13916 (1998)

    Article  ADS  Google Scholar 

  • R. Janson, H.-C. Rosman, K. Karlsson, A. Hansson, Biogenic emissions and gaseous precursors to forest aerosols. Tellus B 53(4), 423–440 (2001)

    Article  ADS  Google Scholar 

  • J. Kazil, E.R. Lovejoy, Tropospheric ionization and aerosol production: A model study. J. Geophys. Res. 109, D19206 (2004)

    Article  ADS  Google Scholar 

  • J. Kazil, E.R. Lovejoy, A semi-analytical method for calculating rates of new sulfate aerosol formation from the gas phase. Atmos. Chem. Phys. 7, 3447–3459 (2007)

    Article  ADS  Google Scholar 

  • J. Kazil, E.R. Lovejoy, M.C. Barth, K. O’Brien, Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos. Chem. Phys. 6, 4905–4924 (2006)

    Article  ADS  Google Scholar 

  • V.-M. Kerminen, T. Anttila, T. Petäjä, L. Laakso, S. Gagné, K.E.J. Lehtinen, M. Kulmala, Charging state of the atmospheric nucleation mode: Implications for separating neutral and ion-induced nucleation. J. Geophys. Res. 112, D21205 (2007)

    Article  ADS  Google Scholar 

  • T.O. Kim, T. Ishida, M. Adachi, K. Okuyama, J.H. Seinfeld, Nanometer-sized particle formation from NH3/SO2/H2O/Air mixtures by ionizing irradiation. Aer. Sci. Tech. 29, 111–125 (1998)

    Article  Google Scholar 

  • J.E. Kristjánsson, J. Kristiansen, Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J. Geophys. Res. 105, 11851–11864 (2000)

    Article  ADS  Google Scholar 

  • J.E. Kristjánsson, A. Staple, J. Kristiansen, E. Kaas, A new look at possible connections between solar activity, clouds and climate. Geophys. Res. Lett. 29, 22–1 (2002)

    Article  Google Scholar 

  • J.E. Kristjánsson, J. Kristiansen, E. Kaas, Solar activity, cosmic rays, clouds and climate – an update. Adv. Space Res. 34, 407–415 (2004)

    Article  ADS  Google Scholar 

  • M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, P.H. McMurry, Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aer. Sci. 35, 143–176 (2004a)

    Article  Google Scholar 

  • M. Kulmala, V.-M. Kerminen, T. Anttila, A. Laaksonen, C.D. O’Dowd, Organic aerosol formation via sulphate cluster activation. J. Geophys. Res. 109, D4205 (2004b)

    Article  Google Scholar 

  • M. Kulmala, A. Reissell, M. Sipilä, B. Bonn, T.M. Ruuskanen, K.E.J. Lehtinen, V.-M. Kerminen, J. Ström, Deep convective clouds as aerosol production engines: Role of insoluble organics. J. Geophys. Res. 111, 17202 (2006)

    Article  Google Scholar 

  • T. Kurtén, M. Noppel, H. Vehkamäki, M. Salonen, M. Kulmala, Quantum chemical studies of hydrate formation of H2SO4 and HSO 4 . Boreal Environ. Res. 12, 431–453 (2007)

    Google Scholar 

  • L. Laakso, J.M. Mäkelä, L. Pirjola, M. Kulmala, Model studies on ion-induced nucleation in the atmosphere. J. Geophys. Res. 107, 4427 (2002)

    Article  Google Scholar 

  • L. Laakso, T. Anttila, K.E.J. Lehtinen, P.P. Aalto, M. Kulmala, U. Hõrrak, J. Paatero, M. Hanke, F. Arnold, Kinetic nucleation and ions in boreal forest particle formation events. Atmos. Chem. Phys. 4, 2353–2366 (2004a)

    Article  ADS  Google Scholar 

  • L. Laakso, T. Petäjä, K.E.J. Lehtinen, M. Kulmala, J. Paatero, U. Hõrrak, H. Tammet, J. Joutsensaari, Ion production rate in a boreal forest based on ion, particle and radiation measurements. Atmos. Chem. Phys. 4, 1933–1943 (2004b)

    Article  ADS  Google Scholar 

  • L. Laakso, S. Gagné, T. Petäjä, A. Hirsikko, P.P. Aalto, M. Kulmala, V.-M. Kerminen, Detecting charging state of ultra-fine particles: instrumental development and ambient measurements. Atmos. Chem. Phys. 7, 1333–1345 (2007a)

    Article  ADS  Google Scholar 

  • L. Laakso, T. Grönholm, L. Kulmala, S. Haapanala, A. Hirsikko, E.R. Lovejoy, J. Kazil, T. Kurtén, M. Boy, E.D. Nilsson, A. Sogachev, I. Riipinen, F. Stratmann, M. Kulmala, Hot-air balloon as a platform for boundary layer profile measurements during particle formation. Boreal Environ. Res. 12, 279–294 (2007b)

    Google Scholar 

  • A. Laaksonen, V. Talanquer, D.W. Oxtoby, Nucleation: Measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46, 489–524 (1995)

    Article  ADS  Google Scholar 

  • P.M. Langevin, Une formule fondamentale de théorie cinétique. Ann. Chim. Phys. 8, 245–288 (1905)

    Google Scholar 

  • S.-H. Lee, J.M. Reeves, J.C. Wilson, D.E. Hunton, A.A. Viggiano, T.M. Miller, J.O. Ballenthin, L.R. Lait, Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301, 1886–1889 (2003)

    Article  ADS  Google Scholar 

  • E. Lovejoy, J. Curtius, Cluster ion thermal decomposition (II): Master equation modeling in the low pressure limit and fall-off regions. Bond energies for HSO 4 (H2SO4) x (HNO3) y . J. Phys. Chem. A 105, 10874–10883 (2001)

    Article  Google Scholar 

  • E.R. Lovejoy, J. Curtius, K.D. Froyd, Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res. 109, D08204 (2004)

    Article  Google Scholar 

  • N. Marsh, H. Svensmark, Cosmic rays, clouds, and climate. Space Sci. Rev. 94, 215–230 (2000)

    Article  ADS  Google Scholar 

  • J.J. Marti, A. Jefferson, X. Ping Cai, C. Richert, P.H. McMurry, F. Eisele, H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions. J. Geophys. Res. 102, 3725–3736 (1997a)

    Article  ADS  Google Scholar 

  • J.J. Marti, R.J. Weber, P.H. McMurry, F. Eisele, D. Tanner, A. Jefferson, New particle formation at a remote continental site: Assessing the contributions of SO2 and organic precursors. J. Geophys. Res. 102, 6331–6340 (1997b)

    Article  ADS  Google Scholar 

  • A.B. Nadykto, Yu, Uptake of neutral polar vapor molecules by charged clusters/particles: Enhancement due to dipole-charge interactions. J. Geophys. Res. 108, 4717 (2003)

    Article  Google Scholar 

  • A.B. Nadykto, A. Al Natsheh, F. Yu, K.V. Mikkelsen, R. J., Effect of molecular structure and hydration on the uptake of gas-phase sulfuric acid by charged clusters/ultrafine particles. Aer. Sci. Tech. 38, 349–353 (2004)

    Article  Google Scholar 

  • H.V. Neher, S.E. Forbush, Correlation of cosmic ray-intensity and solar activity. Phys. Rev. Lett. 1, 173–174 (1958)

    Article  ADS  Google Scholar 

  • P.A. O’Dowd, K. Hämeri, M. Kulmala, T. Hoffmann, Atmospheric particles from organic vapours. Nature 416, 497–498 (2002)

    Article  ADS  Google Scholar 

  • C. O’Dowd, P. Wagner, Nucleation and Atmospheric Aerosols (Springer, Berlin, 2008)

    Google Scholar 

  • F. Raes, A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system–I. Extension of the classical theory and search for experimental evidence. J. Aer. Sci. 16, 217–227 (1985)

    Article  Google Scholar 

  • F. Raes, A. Janssens, Ion-induced aerosol formation in a H2O-H2SO4 system–II. Numerical-calculations and conclusions. J. Aer. Sci. 17, 715–722 (1986)

    Article  Google Scholar 

  • F. Raes, A. Janssens, R. van Dingenen, The role of ion-induced aerosol formation in the lower atmosphere. J. Aer. Sci. 17, 466–470 (1986)

    Google Scholar 

  • H. Reiss, The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950)

    Article  ADS  Google Scholar 

  • W.B. Rossow, R.A. Schiffer, ISCCP Cloud data products. Bull. Am. Meteorol. Soc. 72, 2–20 (1991)

    Article  ADS  Google Scholar 

  • W.B. Rossow, R.A. Schiffer, Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999)

    Article  ADS  Google Scholar 

  • K. Sellegri, M. Hanke, B. Umann, F. Arnold, M. Kulmala, Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST. Atmos. Chem. Phys. 5, 373–384 (2005)

    Article  ADS  Google Scholar 

  • T. Sloan, A.W. Wolfendale, Testing the proposed causal link between cosmic rays and cloud cover. Env. Res. Lett. 3, 024001 (2008)

    Article  Google Scholar 

  • J.N. Smith, K.F. Moore, F.L. Eisele, D. Voisin, A.K. Ghimire, H. Sakurai, P.H. McMurry, Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta. J. Geophys. Res. 110, D22S03 (2005)

    Article  Google Scholar 

  • A. Sorokin, F. Arnold, D. Wiedner, Formation and growth of sulfuric acid-water cluster ions: Experiments, modelling, and implications for ion-induced aerosol formation. Atmos. Env. 40, 2030–2045 (2006)

    Article  Google Scholar 

  • T. Su, W.J. Chesnavich, Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 76, 5183–5185 (1982)

    Article  ADS  Google Scholar 

  • H. Svensmark, E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Terr. Phys. 59, 1225–1232 (1997)

    Article  ADS  Google Scholar 

  • J.J. Thomson, Conduction of Electricity through Gases (Cambridge University Press, Cambridge, 1906)

    MATH  Google Scholar 

  • R.P. Turco, J.-X. Zhao, F. Yu, A new source of tropospheric aerosols: Ion-ion recombination. Geophys. Res. Lett. 25, 635–638 (1998)

    Article  ADS  Google Scholar 

  • S.A. Twomey, The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1148–1152 (1977)

    Article  ADS  Google Scholar 

  • M. Vana, E. Tamm, U. Hõrrak, A. Mirme, H. Tammet, L. Laakso, P.P. Aalto, M. Kulmala, Charging state of atmospheric nanoparticles during the nucleation burst events. Atmos. Res. 82, 536–546 (2006)

    Article  Google Scholar 

  • K.G. Vohra, M.C. Subba Ramu, K.N. Vasudevan, Behavior of aerosols formed by clustering of molecules around gaseous ions. Atmos. Env. 3, 99–105 (1969)

    Article  Google Scholar 

  • M. Volmer, A. Weber, Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 119, 277–301 (1926)

    Google Scholar 

  • S. Wilhelm, S. Eichkorn, D. Wiedner, L. Pirjola, F. Arnold, Ion-induced aerosol formation: New insights from laboratory measurements of mixed cluster ions HSO 4 (H2SO4) a (H2O) w and H+(H2SO4) a (H2O) w . Atmos. Env. 38, 1735–1744 (2004)

    Article  Google Scholar 

  • C.T.R. Wilson, Condensation of water vapour in the presence of dust-free air and other gases. Phil. Trans. R. Soc. of London A 189, 265–307 (1897)

    Article  ADS  Google Scholar 

  • C.T.R. Wilson, On the condensation nuclei produced in gases by the action of Röntgen rays, uranium rays, ultra-violet light, and other agents. Phil. Trans. R. Soc. of London A 192, 403–453 (1899)

    Article  ADS  Google Scholar 

  • B.E. Wyslouzil, J.H. Seinfeld, R.C. Flagan, K. Okuyama, Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water. J. Chem. Phys. 94, 6842–6850 (1991)

    Article  ADS  Google Scholar 

  • F. Yu, Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate, J. Geophys. Res. 107 (2002)

    Google Scholar 

  • F. Yu, Modified Kelvin-Thomson equation considering ion-dipole interaction: Comparison with observed ion-clustering enthalpies and entropies. J. Chem. Phys. 122, 084503 (2005)

    Article  ADS  Google Scholar 

  • F. Yu, Binary H2SO4-H2O homogeneous nucleation based on kinetic quasi-unary nucleation model: Look-up tables. J. Geophys. Res. 111, D04201 (2006a)

    Article  Google Scholar 

  • F. Yu, Effect of ammonia on new particle formation: A kinetic H2SO4-H2O-NH3 nucleation model constrained by laboratory measurements, J. Geophys. Res. 111 (2006b)

    Google Scholar 

  • F. Yu, From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model. Atmos. Chem. Phys. 6, 5193–5211 (2007)

    Article  ADS  Google Scholar 

  • F. Yu, R.P. Turco, Ultrafine aerosol formation via ion-mediated nucleation. Geophys. Res. Lett. 27, 883–886 (2000)

    Article  ADS  Google Scholar 

  • F. Yu, R.P. Turco, From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814 (2001)

    Article  ADS  Google Scholar 

  • F. Yu, Z. Wang, G. Luo, R. Turco, Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmos. Chem. Phys. 8, 2537–2554 (2008)

    Article  ADS  Google Scholar 

  • G.K. Yue, L.Y. Chan, Theory of the formation of aerosols of volatile binary-solutions through the ion-induced nucleation process. J. Coll. Int. Sc. 68, 501–507 (1979)

    Article  Google Scholar 

  • R. Zhang, I. Suh, J. Zhao, D. Zhang, E.C. Fortner, X. Tie, L.T. Molina, M.J. Molina, Atmospheric new particle formation enhanced by organic acids. Science 304, 1487–1490 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kazil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, BV

About this chapter

Cite this chapter

Kazil, J., Harrison, R.G., Lovejoy, E.R. (2008). Tropospheric New Particle Formation and the Role of Ions. In: Leblanc, F., Aplin, K.L., Yair, Y., Harrison, R.G., Lebreton, J.P., Blanc, M. (eds) Planetary Atmospheric Electricity. Space Sciences Series of ISSI, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87664-1_15

Download citation

Publish with us

Policies and ethics