Skip to main content
Log in

Atmospheric nuclei in the remote free-troposphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

During May-June of 1990 an extensive flight series to survey aerosol present in the upper-troposphere was undertaken aboard the NASA DC-8 as part of the CLObal Backscatter Experiment (GLOBE). About 50,000 km were characterized between 8–12 km altitude and between 70°N and 58°S. Aerosol with diameters greater than 3nm were counted and sized with a combination of condensation nuclei counters and optical particle counters. Aerosol number and mass concentrations were separately identified with regard to both refractory and volatile components. Regions of the free-troposphere with the lowest mass concentrations were generally found to have the highest number concentrations and appeared to be effective regions for new particle production. These new particle concentrations appear inversely related to available aerosol surface area and their volatility suggests a sulfuric acid composition. The long lifetime of these new particles aloft can result in their growth to sizes effective as CN and CCN that can be mixed throughout the troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramanathan V., Cess R.D., Harrison E.F., Minnis P., Barkstrom B.R., Ahmad E. and Hartmann D. (1989) “Cloud radiative forcing and climate: Results from the earth radiation budget experiment”, Science 243, 57–63.

    Article  Google Scholar 

  2. Charlson R.J., Lovelock J.E., Andreae M.O. and Warren S.G. (1987) “Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate: A geophysical feedback”, Nature 326, 655–661.

    Article  Google Scholar 

  3. Albrecht B.A. (1989) “Aerosols, cloud microphysics and fractional cloudiness”, Science 245, 1227–1230.

    Article  Google Scholar 

  4. Latham J. and Smith M.H. (1990) “Effects on global warming of wind-dependent aerosol generation at the ocean surface”, Nature 347, 372–373.

    Article  Google Scholar 

  5. Schwartz S.E. (1988) “Are global cloud albedo and climate controlled by marine phytoplankton”, Nature 336, 441–445.

    Article  Google Scholar 

  6. Twomey S. (1977) Atmospheric Aerosols, Elsevier, Amsterdam.

    Google Scholar 

  7. Baker M.B. and Charlson R.J. (1990) “Bistability of CCN concentrations and thermodynamics in the cloud topped boundary layer”, Nature 345, 142–145.

    Article  Google Scholar 

  8. Bates T.S., Clarke A.D., Kapustin V.K., Johnson J.E. and Charlson R.J. (1989) “Oceanic dimethysulfide and marine aerosol: Difficulties associated with assessing their covarience”, Global Biogeochem. Cyc. 3, 299–304.

    Article  Google Scholar 

  9. Helas, G., Andreae, M.O. and Hudson, J.G. (1990) EOS abstract A11A-8, 1225.

  10. Hegg D.A., Radke L.F. and Hobbs P.V. (1990) “Particle production associated with marine clouds”, J. Geophys. Res. 95, 13917–13926.

    Article  Google Scholar 

  11. Clarke A.D., Ahlquist N.C. and Covert D.S. (1987) “The Pacific marine aerosol: Evidence for acid sulfates”, J. Geophys. Res. 92, 4179–4190.

    Article  Google Scholar 

  12. Savoie D.L. and Prospero J.M. (1982) “Particle size distribution of nitrate and sulfate in the marine atmosphere”, Geophys. Res. Lett. 9, 1207–1210.

    Article  Google Scholar 

  13. Andreae M.O., Berresheim H., Andreae T.W., Kritz M.A., and Bates T.S. (1988) “Vertical distribution of dimethylsulfide, sulfur dioxide formic acid, aerosol ions and radon over the northeast Pacific Ocean”, J. Atmos. Chem. 6, 149–173.

    Article  Google Scholar 

  14. Porter, J.N. and Clarke, A.D. (in press) “Aircraft studies of size dependent aerosol sampling”, Jour. Geophys. Res.

  15. Clarke A.D. (1991) “A thermooptic technique for in-situ analysis of size-resolved aerosol physicochemistry”, Atmos. Env. 25A, 635–644.

    Article  Google Scholar 

  16. Prospero J.M. (1989) The Large Scale Atmospheric Transport of Natural and Contaminant Substances, Reidel, Dordrect, Holland.

    Google Scholar 

  17. McMurry P.H. and Friedlander S.K. (1978) “Aerosol formation in reacting gases: Relation of surface area to rate of gas to particle conversion”, J. Colloid and Interface Science 64, 248–257.

    Article  Google Scholar 

  18. Pruppacher H.R. and Klett J.D. (1978) Microphysics of Clouds and Precipitation 226, Reidel, Dordrecht.

    Book  Google Scholar 

  19. Shaw G.E. (1989) “Production of condensation nuclei in clean air by nucleation of H2SO4”, Atmos. Env. 23, 2841–2846.

    Article  Google Scholar 

  20. Flyger H., Heidam N.Z., Hansen K., Megaw W.J., Walther E.G. and Hogan A.W. (1976) “The background level of summer tropospheric aerosol over Greenland and the North Atlantic”, J. Aerosol Sci. 7, 103–140.

    Article  Google Scholar 

  21. Hopple W.A., Dinger J.E., and R.E. Ruskin (1973) “Vertical profiles of CCN at various geographical locations”, J. of Atmos. Sci. 30, 1410–1419.

    Article  Google Scholar 

  22. Dinger J.E., Howell H.B. and Wojciechowski, (1970) “On the source and composition of cloud condensation nuclei in the subsident air masses over the North Atlantic”, J. Atmos. Sci. 27, 791–797.

    Article  Google Scholar 

  23. Bigg E.K., Gras J.L., and Evans C. (1984) “Origin of aitken particles in remote regions of the southern hemisphere”, J. Atmos. Chem. 1, 203–214.

    Article  Google Scholar 

  24. Saltzman E.S., Savoie D.L., Prospero J.M., and R.G. Zika (1986) “Methanesulfonic acid and non-sea-salt sulfate in Pacific air: Regional and seasonal variations”, J. Atmos. Chem. 4, 227–240.

    Article  Google Scholar 

  25. Parungo F.P., Nagamoto C.T., Rosinski J., and Haagenson P.L. (1986) “A study of marine aerosols over the Pacific Ocean”, J. Atmos. Chem. 4, 199–226.

    Article  Google Scholar 

  26. Andreae M.O. (1983) “Soot carbon and excess fine potassium: Long range transport of combustion derived aerosols”, Science 2, 744–747.

    Article  Google Scholar 

  27. Aitken, J. Proc. Royal Soc. Edinburg 32, 183, 1910–11.

  28. Bigg E.K. and Turvey D.E. (1978) “Sources of atmospheric particles over Australia”, Atmos. Env. 12, 1643–1655.

    Article  Google Scholar 

  29. Kreidenwies S.M. and Sienfeld J.H. (1988) “Nucleation of sulfuric acid-water and methanesulfonic acid-water particles: Implications for the atmospheric chemistry of organosulfur species”, Atmos. Env. 22, 283–296.

    Article  Google Scholar 

  30. Voiriol A.J. and Mirabel P. (1989) “Heteromolecular nucleation in the sulfuric acid-water system”, Atmos. Env. 23, 2053–2057.

    Article  Google Scholar 

  31. Hidy G.M., Katz J.L. and Mirabel P. (1978) “Sulfate aerosol formation and growth in the stratosphere”, Atmos. Env. 12, 887–892.

    Article  Google Scholar 

  32. Hopple W.A. and Frick G.M. (1990) “Submicron aerosol size distributions measured over the tropical and south Pacific”, Atmos. Env. 24A, 645–659.

    Article  Google Scholar 

  33. Gage, K.S. (1991) personnal communication.

  34. Clarke A.D. (1989) “Aerosol light absorption by soot in remote environments”, Aerosol Sci. and Tech. 10, 161–171.

    Article  Google Scholar 

  35. Clarke A.D. and Charlson R.J. (1985) “Radiative properties of the background aerosol: Absorption component of extinction”, Science 229, 263–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A.D. Atmospheric nuclei in the remote free-troposphere. J Atmos Chem 14, 479–488 (1992). https://doi.org/10.1007/BF00115252

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115252

Key words

Navigation