Skip to main content

Bioinformatics, Genomics, and Functional Genomics: Overview

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

Recent advances in high-throughput genetic and genomic technologies, such as efficient DNA sequencers, multiplex genotyping platforms, microarrays, and proteomics and metabolomics assays, have provided researchers with an unprecedented ability to seek out and characterize the genetic determinants of diseases and clinical outcomes of all sorts. In fact, the application of these technologies has led to the identification of hundreds, if not thousands, of genomic loci that are associated with or even responsible for many different disease conditions, clinical outcomes, and responses to medications. As useful as these technologies are, however, their ability to generate data easily outpaces an ability to draw compelling inferences from those data. The field of bioinformatics evolved out of a need to manage, analyze, and interpret high-dimensional data of the type generated from the application of high-throughput genetic and genomic technologies. Necessary bioinformatics tools include those that enable one to test statistical associations between DNA sequence variations and phenotypes, find patterns in gene or protein expression data, understand how specific perturbations in a protein may affect the functioning of that protein, and determine which fundamental processes, pathways, or genetic networks may harbor the molecular “lesions” causing disease. In this chapter we provide an overview of available bioinformatics strategies and tools that have either been applied or are simply applicable to the genetic and genomic dissection of complex pulmonary vascular diseases (PVD) and other complex diseases. We start with a brief summary of the motivation for examining the genetic basis of PVD, consider various strategies for identifying genetic factors contributing to PVD, and then describe the bioinformatics tools and resources available to facilitate these analyses. We provide relevant Web resources in addition to references, and also provide example analyses and results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605

    Article  PubMed  CAS  Google Scholar 

  2. Collins FS (1990–1991) Identifying human disease genes by positional cloning. Harvey Lect 86:149–164

    CAS  Google Scholar 

  3. Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  PubMed  CAS  Google Scholar 

  4. Austin ED, Loyd JE (2007) Genetics and mediators in pulmonary arterial hypertension. Clin Chest Med 28:43–57

    Article  PubMed  Google Scholar 

  5. Sztrymf B, Yaïci A, Girerd B, Humbert M (2007) Genes and ­pulmonary arterial hypertension. Respiration 74:123–132

    Article  PubMed  CAS  Google Scholar 

  6. Newman JH, Wheeler L, Lane KB, Loyd E, Gaddipati R, Phillips JA 3rd, Loyd JE (2001) Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 345:319–324

    Article  PubMed  CAS  Google Scholar 

  7. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  PubMed  CAS  Google Scholar 

  8. Ott J (1999) Analysis of human genetic linkage. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  9. Topol EJ, Frazer KA (2007) The resequencing imperative. Nat Genet 39:439–440

    Article  PubMed  CAS  Google Scholar 

  10. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1220

    Article  Google Scholar 

  11. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Google Scholar 

  12. Maresso K, Broeckel U (2008) Genotyping platforms for mass-throughput genotyping with SNPs, including human genome-wide scans. Adv Genet 60:107–139

    Article  PubMed  CAS  Google Scholar 

  13. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Mapping complex disease loci in whole-genome association studies. Nature 429:446–452

    Article  PubMed  CAS  Google Scholar 

  14. Jakobsson M, Scholz SW, Scheet P et al (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451:998–1003

    Article  PubMed  CAS  Google Scholar 

  15. Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40:695–701

    Article  PubMed  CAS  Google Scholar 

  16. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872

    Article  PubMed  CAS  Google Scholar 

  17. Levy S, Sutton G, Ng PC et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed  Google Scholar 

  18. Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  PubMed  CAS  Google Scholar 

  19. Ji W, Foo JN, O’Roak BJ et al (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40:592–599

    Article  PubMed  CAS  Google Scholar 

  20. Romeo S, Pennacchio LA, Fu Y et al (2007) Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet 39:513–516

    Article  PubMed  CAS  Google Scholar 

  21. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genom Hum Genet 7:61–80

    Article  CAS  Google Scholar 

  22. Ng PC, Henikoff S (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res 12:436–446

    Article  PubMed  CAS  Google Scholar 

  23. Thomas PD, Kejariwal A (2004) Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidence for differences in molecular effects. Proc Natl Acad Sci U S A 101:15398–15403

    Google Scholar 

  24. Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10:591–597

    Article  PubMed  CAS  Google Scholar 

  25. Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, de la Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21:3176–3178

    Article  PubMed  CAS  Google Scholar 

  26. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinform 7:166

    Article  Google Scholar 

  27. Nakken S, Alseth I, Rognes T (2007) Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes. Neuroscience 145:1273–1279

    Article  PubMed  CAS  Google Scholar 

  28. Torkamani A, Schork NJ (2007) Accurate prediction of deleterious protein kinase polymorphisms. Bioinformatics 23:2918–2925

    Article  PubMed  CAS  Google Scholar 

  29. Xue D, Yin J, Tan M, Yue J, Wang Y, Liang L (2008) Prediction of functional nonsynonymous single nucleotide polymorphisms in human G-protein-coupled receptors. J Hum Genet 53:379–389

    Article  PubMed  CAS  Google Scholar 

  30. Pritchard C, Underhill P, Greenfield A (2008) Using DNA microarrays. Methods Mol Biol 461:605–629

    Article  PubMed  CAS  Google Scholar 

  31. Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  PubMed  CAS  Google Scholar 

  32. Abdullah KG, Li L, Shen GQ et al (2008) Four SNPS on chromosome 9p21 confer risk to premature, familial CAD and MI in an American Caucasian population (GeneQuest). Ann Hum Genet 72:654–657

    Article  PubMed  CAS  Google Scholar 

  33. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  34. Montaner J, Fernandez-Cadenas I, Molina CA et al (2006) Poststroke C-reactive protein is a powerful prognostic tool among candidates for thrombolysis. Stroke 37:1205–1210

    Article  PubMed  CAS  Google Scholar 

  35. Topakian R, Strasak AM, Nussbaumer K et al (2008) Prognostic value of admission C-reactive protein in stroke patients undergoing IV thrombolysis. J Neurol 255:1190–1196

    Article  PubMed  CAS  Google Scholar 

  36. McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604

    Article  PubMed  CAS  Google Scholar 

  37. Stenson PD, Ball EV, Mort M et al (2003) Human gene mutation database (HGMD): 2003 update. Hum Mutat 21:577–581

    Article  PubMed  CAS  Google Scholar 

  38. Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  PubMed  CAS  Google Scholar 

  39. The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Article  Google Scholar 

  40. Mailman MD, Feolo M, Jin Y et al (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39:1181–1186

    Article  PubMed  CAS  Google Scholar 

  41. Dawber TR, Meadors GF, Moore FEJ (1951) Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health 41:279–286

    Article  CAS  Google Scholar 

  42. Johnson AD, O’Donnell CJ (2009) An open access database of genome-wide association results. BMC Med Genet 10:6

    Article  PubMed  Google Scholar 

  43. Zondervan KT, Cardon LR (2007) Designing candidate gene and genome-wide case-control association studies. Nat Protoc 2:2492–2501

    Article  PubMed  CAS  Google Scholar 

  44. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-stage genome-wide association studies. Genet Epidemiol 31:776–788

    Article  PubMed  Google Scholar 

  45. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage ­analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  46. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  CAS  Google Scholar 

  47. Parkinson H, Kapushesky M, Shojatalab M et al (2007) ArrayExpress – a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35:D747–D750

    Article  PubMed  CAS  Google Scholar 

  48. Ikeo K, Ishi-i J, Tamura T et al (2003) CIBEX: center for information biology gene expression database. C R Biol 326:1079–1082

    Article  PubMed  CAS  Google Scholar 

  49. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum ­information about a microarray experiment (MIAME)-toward ­standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  50. Thou shalt share your data (2008) Nat Methods 5:209

    Google Scholar 

  51. Mathivanan S, Ahmed M, Ahn NG et al (2008) Human Proteinpedia enables sharing of human protein data. Nat Biotechnol 26:164–167

    Article  PubMed  CAS  Google Scholar 

  52. Golovin A, Oldfield TJ, Tate JG et al (2004) E-MSD: an integrated data resource for bioinformatics. Nucleic Acid Res 32:D211–D216

    Article  PubMed  CAS  Google Scholar 

  53. Bull TM, Coldren CD, Moore M et al (2004) Gene microarray ­analysis of peripheral blood cells in pulmonary arterial hypertension. Am J Respir Crit Care Med 170:911–919

    Article  PubMed  Google Scholar 

  54. Runo JR, Loyd JE (2003) Primary pulmonary hypertension. Lancet 361:1533–1544

    Article  PubMed  Google Scholar 

  55. Ekins S, Nikolsky Y, Bugrim A et al (2007) Pathway mapping tools for analysis of high content data. Methods Mol Biol 356:319–350

    PubMed  CAS  Google Scholar 

  56. Ganter B, Zidek N, Hewitt PR et al (2008) Pathway analysis tools and toxicogenomics reference databases for risk assessment. Pharmacogenomics 9:35–54

    Article  PubMed  CAS  Google Scholar 

  57. Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are ­coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  PubMed  CAS  Google Scholar 

  58. Dorfmüller P, Perros F, Balabanian K et al (2003) Inflammation in pulmonary arterial hypertension. Eur Respir J 22:358–363

    Article  PubMed  Google Scholar 

  59. Humbert M, Monti G, Brenot F et al (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151:1628–1631

    PubMed  CAS  Google Scholar 

  60. Gómez A, Bialostozky D, Zajarias A et al (2001) Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol 38:1137–1142

    Article  PubMed  Google Scholar 

  61. Chen Y, Zhu J, Lum PY et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    Article  PubMed  CAS  Google Scholar 

  62. Emilsson V, Thorleifsson G, Zhang B et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428

    Article  PubMed  CAS  Google Scholar 

  63. Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010

    Article  PubMed  CAS  Google Scholar 

  64. Duarte NC, Becker SA, Jamshidi N et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782

    Article  PubMed  CAS  Google Scholar 

  65. Cochrane G, Akhtar R, Bonfield J et al (2009) Petabyte-scale innovations at the European Nucleotide Archive. Nucleic Acids Res 37:D19–D25

    Article  PubMed  CAS  Google Scholar 

  66. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  PubMed  CAS  Google Scholar 

  67. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  PubMed  CAS  Google Scholar 

  68. Hatchwell E, Greally JM (2007) The potential role of epigenomic dysregulation in complex human disease. Trends Genet 23:588–595

    Article  PubMed  CAS  Google Scholar 

  69. DeAngelis JT, Farrington WJ, Tollefsbol TO (2008) An overview of epigenetic assays. Mol Biotechnol 38:179–183

    Article  PubMed  CAS  Google Scholar 

  70. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genom Hum Genet 2:343–372

    Article  CAS  Google Scholar 

  71. Mo ML, Palsson BØ (2009) Understanding human metabolic physiology: a genome-to-systems approach. Trends Biotechnol 27:37–44

    Article  PubMed  CAS  Google Scholar 

  72. Rockman MV (2008) Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 456:738–744

    Article  PubMed  CAS  Google Scholar 

  73. Jenkinson AM, Albrecht M, Birney E et al (2008) Integrating biological data – the Distributed Annotation System. BMC Bioinformatics 9:S3

    Article  PubMed  Google Scholar 

  74. Butler D (2008) Translational research: crossing the valley of death. Nature 453:840–842

    Article  PubMed  CAS  Google Scholar 

  75. Ginsburg GS (2008) Genomic medicine: “grand challenges” in the translation of genomics to human health. Eur J Hum Genet 16:873–874

    Article  PubMed  Google Scholar 

  76. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  77. Weir BS (2008) Linkage disequilibrium and association mapping. Annu Rev Genom Hum Genet 9:129–142

    Article  CAS  Google Scholar 

Additional Reading

  1. Bull TM, Coldren CD, Geraci MW, Voelkel NF (2007) Gene expression profiling in pulmonary hypertension. Proc Am Thorac Soc 4:117–120

    Article  PubMed  CAS  Google Scholar 

  2. Sampsonas F, Karkoulias K, Kaparianos A, Spiropoulos K (2006) Genetics of chronic obstructive pulmonary disease, beyond a1-antitrypsin deficiency. Curr Med Chem 13:2857–2873

    Article  PubMed  CAS  Google Scholar 

  3. Pettersson F, Morris AP, Barnes MR, Cardon LR (2008) Goldsurfer2 (Gs2): a comprehensive tool for the analysis and visualization of genome wide association studies. BMC Bioinform 4(9):138

    Article  Google Scholar 

  4. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  PubMed  CAS  Google Scholar 

  5. Melzer D, Perry JR, Hernandez D et al (2008) A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet 4:e1000072

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Torkamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Torkamani, A., Topol, E.J., Schork, N.J. (2011). Bioinformatics, Genomics, and Functional Genomics: Overview. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_39

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics