Skip to main content
Log in

An Overview of Epigenetic Assays

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

A significant portion of ongoing epigenetic research involves the investigation of DNA methylation and chromatin modification patterns seen throughout many biological processes. Over the last few years, epigenetic research has undergone a gradual shift and recent studies have been directed toward a genome-wide assessment. DNA methylation and chromatin modifications are essential components of the regulation of gene activity. DNA methylation effectively down-regulates gene activity by addition of a methyl group to the five-carbon of a cytosine base. Less specifically, modification of the chromatin structure can be carried out by multiple mechanisms leading to either the upregulation or down-regulation of the associated gene. Of the many assays used to assess the effects of epigenetic modifications, chromatin immunoprecipitation (ChIP), which serves to monitor changes in chromatin structure, and bisulfite modification, which tracks changes in DNA methylation, are the two most commonly used techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacob, S., & Moley, K. H. (2005). Gametes and embryo epigenetic reprogramming affect developmental outcome. Pediatric Research, 58, 437–446.

    Article  PubMed  Google Scholar 

  2. Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857–869.

    Article  PubMed  CAS  Google Scholar 

  3. Tang, W., & Ho, S. (2007). Epigenetic reprogramming and imprinting in origins of disease. Reviews in Endocrine & Metabolic Disorders. 2007 July 20 [Epub ahead of print]. PMID: 17638084.

  4. Das, P. M., & Singal, R. (2004). DNA methylation and cancer. Journal of Clinical Oncology, 22, 4632–4639.

    Article  PubMed  CAS  Google Scholar 

  5. Bestor, T. H. (2000). The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 2395–2402.

    Article  PubMed  CAS  Google Scholar 

  6. Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  7. Renaud, S., et al. (2007). Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Research, 35, 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  8. Costello, J. F., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24, 132–138.

    Article  PubMed  CAS  Google Scholar 

  9. Nan, X., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  10. Fuks, F., et al. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. The Journal of Biological Chemistry, 278, 4035–4040.

    Article  PubMed  CAS  Google Scholar 

  11. Konishi, K., & Issa, J. J. (2007). Targeting aberrant chromatin structure in colorectal carcinomas. Cancer Journal, 13, 49–55.

    CAS  Google Scholar 

  12. Nicolas, E., et al. (2007). Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nature Structural & Molecular Biology, 14, 372–380.

    Article  CAS  Google Scholar 

  13. Zupkovitz, G., et al. (2006). Negative and positive regulation of gene expression by mouse histone deacetylase 1. Molecular and Cellular Biology, 26, 7913–7928.

    Article  PubMed  CAS  Google Scholar 

  14. Barski, A., et al. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  15. Stirzaker, C., et al. (2004). Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Research, 64, 3871–3877.

    Article  PubMed  CAS  Google Scholar 

  16. Robert, M. F., et al. (2003). DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature Genetics, 33, 61–65.

    Article  PubMed  CAS  Google Scholar 

  17. Zinn, R. L., et al. (2007). hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Research, 67, 194–201.

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalgo, M. L., & Liang, G. (2007). Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nature Protocols, 2, 1931–1936.

    Article  PubMed  CAS  Google Scholar 

  19. Benhattar, J., & Clement, G. (2004). Methylation-sensitive single-strand conformation analysis: A rapid method to screen for and analyze DNA methylation. Methods in Molecular Biology, 287, 181–193.

    PubMed  CAS  Google Scholar 

  20. Ando, Y., & Hayashizaki, Y. (2006). Restriction landmark genomic scanning. Nature Protocols, 1, 2774–2783.

    Article  PubMed  CAS  Google Scholar 

  21. O’Neill, L. P., & Turner, B. M. (2003). Immunoprecipitation of native chromatin: NChIP. Methods, 31, 76–82.

    Article  PubMed  CAS  Google Scholar 

  22. Trelle, M. B., & Jensen, O. N. (2007). Functional proteomics in histone research and epigenetics. Expert Review Proteomics, 4, 491–503.

    Article  CAS  Google Scholar 

  23. Martins, R. P., Platts, A. E., & Krawetz, S. A. (2007). Tracking chromatin states using controlled DNaseI treatment and real-time PCR. Cellular & Molecular Biology Letters. 2007 Jun 24 [Epub ahead of print]. PMID: 17588221.

  24. Yin, Z., et al. (2007). Attenuated DNA damage repair by trichostatin A through BRCA1 suppression. Radiation Research, 168, 116–124.

    Google Scholar 

  25. Ballestar, E., et al. (2003). Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. The EMBO Journal, 22, 6335–6345.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trygve O. Tollefsbol.

Additional information

J. T. DeAngelis and W. J. Farrington are contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeAngelis, J.T., Farrington, W.J. & Tollefsbol, T.O. An Overview of Epigenetic Assays. Mol Biotechnol 38, 179–183 (2008). https://doi.org/10.1007/s12033-007-9010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-9010-y

Keywords

Navigation