Skip to main content

Quantitative Sobolev and Hardy Inequalities, and Related Symmetrization Principles

  • Chapter
Sobolev Spaces In Mathematics I

Part of the book series: International Mathematical Series ((IMAT,volume 8))

This survey paper deals with strengthened forms of classical Sobolev inequalities, involving remainder terms depending on the distance from the family of extremals, and with analogues for Hardy inequalities, where extremals do not exist, but can be replaced by “virtual” extremals. An account of the stability of isoperimetric and symmetrization inequalities, on which these Sobolev and Hardy inequalities rely, is provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Springer-Verlag,Berlin (1995)

    MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, Orlando (1975)

    MATH  Google Scholar 

  3. Adimurthi, Chaudhuri, N., Ramaswamy, M.: An improved Hardy–Sobolev inequality and its applications. Proc. Am. Math. Soc. 130, 489–505 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adimurthi, Esteban, M.J.: An improved Hardy–Sobolev inequality in W 1,p and its applications to Schrödinger operators. NoDEA Nonlinear Differ. Equ. Appl. 12, 243–263 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Almgren, F.J.Jr., Lieb, E.H.: Symmetric rearrangement is sometimes continuous. J.Am. Math. Soc. 2, 683–773 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alvino, A., Ferone, V., Nitsch, C.: A Sharp Isoperimetric Inequality in the Plane.Preprint

    Google Scholar 

  7. Alvino, A., Lions, P.L., Trombetti, G.: A remark on comparison results via sym-metrization. Proc. R. Soc. Edinb., Sect. A, Math. 102, 37–48 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Alvino, A., Volpicelli, R., Volzone, B.: Best Constants in Hardy–Sobolev Inequalities with Remainder Terms. Preprint

    Google Scholar 

  9. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  10. Aubin, T.: Problèmes isopérimetriques et espaces de Sobolev. J. Differ. Geom. 11,573–598 (1976)

    MathSciNet  Google Scholar 

  11. Baernstein, A.: A unified approach to symmetrization. In: Partial Differential Equations of Elliptic Type. Cambridge Univ. Press, Cambridge (1994)

    Google Scholar 

  12. Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved L p Hardy inequalities with best constants. Trans. Am. Math. Soc. 356, 2169–2196 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bartsch, T., Weth, T., Willem, M.: A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator. Calc.Var. Partial Differ. Equ. 18, 57–75 (2003)

    Article  MathSciNet  Google Scholar 

  14. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  15. Besov, O.V., Il'in, V.P., Nikol'skij, S.M.: Integral Representations of Functions and Embedding Theorems (Russian). Nauka, Moscow (1975); Second ed. (1996); English transl.: Wiley, New York (1978/79)

    Google Scholar 

  16. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bliss, G.A.: An integral inequality. J. London Math. Soc. 5, 40–46 (1930)

    Article  Google Scholar 

  18. Brascamp, H.J., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Brezis, H., Lieb, E.: Sobolev inequalities with remainder terms. J. Funct. Anal. 62,73–86 (1985)

    Article  MathSciNet  Google Scholar 

  20. Brezis, H., Marcus, M., Shafrir, I.: Extremal functions for Hardy's inequality with weights. J. Funct. Anal. 171, 177–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–789 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Brock, F.: A general rearrangement inequality á la Hardy—Littlewood. J. Inequal.Appl. 5, 309–320 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math 384, 153–179 (1988)

    MATH  MathSciNet  Google Scholar 

  24. Burchard, A.: Steiner symmetrization is continuous in W 1,p. Geom. Funct. Anal. 7,823–860 (1997)

    Article  MathSciNet  Google Scholar 

  25. Burchard, A., Guo, Y.: Compactness via symmetrization. J. Funct. Anal. 214, 40–73 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Burchard, A., Hajaiej, H.: Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal. 233, 561–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Burenkov, V.: Sobolev Spaces on Domains. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  28. Burton, G.R.: Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann. 276, 225–253 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chlebik, M., Cianchi, A., Fusco, N.: The perimeter inequality under Steiner sym-metrization: cases of equality. Ann. Math. 162, 525–555 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Cianchi, A.: On the L q norm of functions having equidistributed gradients. Nonlinear Anal. 26, 2007–2021 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Cianchi, A.: A quantitative Sobolev inequality in BV. J. Funct. Anal. 237, 466–481 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Cianchi, A.: Sharp Sobolev-Morrey inequalities and the distance from extremals.Trans. Am. Math. Soc. 360, 4335–4347 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Cianchi, A., Esposito, L., Fusco, N., Trombetti, C.: A quantitative Pólya—Szegö principle. J. Reine Angew. Math. 614 (2008)

    Google Scholar 

  34. Cianchi, A., Ferone, A.: A strenghtened version of the Hardy—Littlewood inequality.J. London Math. Soc. 77, 581–592 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Cianchi, A., Ferone, A.: Hardy inequalities with non standard remainder terms. Ann.Inst. H. Poincaré. Anal. Nonlinéaire [To appear]

    Google Scholar 

  36. Cianchi, A., Ferone, A.: Best Remainder Norms in Sobolev—Hardy Inequalities. Indiana Univ. Math. J. [To appear]

    Google Scholar 

  37. Cianchi, A., Fusco, N.: Steiner symmetric extremals in Pólya—Szegö type inequalities.Adv. Math. 203, 673–728 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Cianchi, A., Fusco, N.: Minimal rearrangements, strict convexity and critical points.Appl. Analysis 85, 67–85 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Cianchi, A., Fusco, N.: Dirichlet integrals and Steiner asymmetry. Bull. Sci. Math.130, 675–696 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: The Sharp Sobolev Inequality in Quantitative Form. Preprint

    Google Scholar 

  41. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass transportation approach to sharp Sobolev and Gagliardo—Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Cwikel, M., Pustylnik, E.: Sobolev type embeddings in the limiting case. J. Fourier Anal. Appl. 4, 433–446 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Davies, E.B.: A review of Hardy inequalities. Oper. Theory, Adv. Appl. 110, 55–67 (1999)

    Google Scholar 

  44. De Giorgi, E.: Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti. Accad. Naz. Lincei Mem. Cl. Sci.Fis. Mat. Nat. Sez.I (8) 5, 33–44 (1958)

    MathSciNet  Google Scholar 

  45. Detalla, A., Horiuchi, T., Ando, H.: Missing terms in Hardy–Sobolev inequalities and its applications. Far East J. Math. Sci. 14, 333–359 (2004)

    MATH  MathSciNet  Google Scholar 

  46. Dolbeault, J., Esteban, M.J., Loss. M., Vega, L.: An analytical proof of Hardy-like inequalities related to the Dirac operator. J. Funct. Anal. 216, 1–21 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  47. Draghici, C., Rearrangement inequalities with application to ratios of heat kernels.Potential Anal. 22, 351–374 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Edmunds, D.E., Kerman, R.A., Pick, L.: Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms. J. Funct. Anal. 170, 307–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Egnell, H., Pacella, F., Tricarico, M.: Some remarks on Sobolev inequalities. Nonlinear Anal., Theory Methods Appl. 13, 671–681 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  50. Esposito, L., Fusco, N., Trombetti, C.: A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa4, 619–651 (2005)

    MATH  MathSciNet  Google Scholar 

  51. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  52. Federer, H., Fleming, W.: Normal and integral currents. Ann. Math.72, 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  53. Ferone, A., Volpicelli, R.: Minimal rearrangements of Sobolev functions: a new proof.Ann. Inst. H.Poincaré, Anal. Nonlinéaire20, 333–339 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ferone, A., Volpicelli, R.: Convex rearrangement: equality cases in the Pólya—Szegöinequality. Calc. Var. Partial Differ. Equ.21, no. 3, 259–272 (2004)

    MATH  MathSciNet  Google Scholar 

  55. Figalli, A., Maggi, E., Pratelli, A.: A Mass Transportation Approach to Quantitative Isoperimetric Inequalities. Preprint

    Google Scholar 

  56. Filippas, S., Maz'ya, V.G., Tertikas, A.: On a question of Brezis and Marcus. Calc.Var. Partial Differ. Equ.25, 491–501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  57. Filippas, S., Maz'ya, V.G., Tertikas, A.: Critical Hardy–Sobolev inequalities. J. Math.Pures Appl.87, 37–56 (2007)

    MATH  MathSciNet  Google Scholar 

  58. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality.Ann. Math. [To appear]

    Google Scholar 

  59. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal.244, 315–341 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  60. Gagliardo, E., Proprietà di alcune classi di funzioni di più variabili. Ric. Mat.7,102–137 (1958)

    MATH  MathSciNet  Google Scholar 

  61. Gazzola, F., Grunau, H.C., Mitidieri, E.: Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc.356, 2149–2168 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  62. Ghoussoub, N., Moradifam, A.: On the Best Possible Remaining Term in the Hardy Inequality. Preprint

    Google Scholar 

  63. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maxi mum principle. Comm. Math. Phys.68, 209–243 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  64. Hall, R.R.: A quantitative isoperimetric inequality inn-dimensional space. J. Reine Angew. Math.428, 161–196 (1992)

    MATH  MathSciNet  Google Scholar 

  65. Hansson, K.: Imbedding theorems of Sobolev type in potential theory. Math. Scand.45, 77–102 (1979)

    MATH  MathSciNet  Google Scholar 

  66. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Univ. Press, Cambridge (1934)

    Google Scholar 

  67. Hilden, K.: Symmetrization of functions in Sobolev spaces and the isoperimetric inequality. Manus. Math.18, 215–235 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  68. Hoffman-Ostenhof, M., Hoffman-Ostenhof, T., Laptev, A.: A geometrical version of Hardy's inequality. J. Funct. Anal.189, 539–548 (2002)

    Article  MathSciNet  Google Scholar 

  69. Kawohl, B.: Rearrangements and convexity of level sets in PDE. Lect. Notes Math.1150, Springer-Verlag, Berlin (1985)

    Google Scholar 

  70. Kawohl, B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal.94, 227–243 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  71. Kesavan, S.: Comparison theorems via symmetrization: revisited. Boll. Unione Mat.Ital., VII, Ser. A11, no. 1, 163–172 (1997)

    MATH  MathSciNet  Google Scholar 

  72. Kesavan, S.: Symmetrization and Applications. World Scientific, Hackensack, NJ (2006)

    MATH  Google Scholar 

  73. Kufner, A.: Weighted Sobolev Spaces. Teubner, Leipzig (1980)

    MATH  Google Scholar 

  74. Lieb, E.H., Loss, M.: Analysis. Am. Math. Soc., Providence, RI (2001)

    Google Scholar 

  75. Loiudice, A.: Improved Sobolev inequalities on the Heisenberg group. Nonlinear Anal.,Theory Methods Appl.62, 953–962 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  76. Lutwak, E., Yang, D., Zhang, G.: Sharp affineL pSobolev inequalities. J. Differ.Geom.62, 17–38 (2002)

    MATH  MathSciNet  Google Scholar 

  77. Maz'ya, V.: Classes of domains and imbedding theorems for function spaces (Russian). Dokl. Akad. Nauk SSSR133, 527–530 (1960); English transl.: Sov. Math.,Dokl.1, 882–885 (1960)

    Google Scholar 

  78. Maz'ya, V.G.: Sobolev Spaces. Springer-Verlag, Berlin-Tokyo (1985)

    Google Scholar 

  79. Maz'ya, V.G.: Analytic criteria in the qualitative spectral analysis of the Schrödinger operator. In: Proceedings of Symposia in Pure Mathematics, Vol. 76, pp. 257–288 (2007)

    Google Scholar 

  80. Morpurgo, C.: Sharp inequalities for functional integrals and traces of conformally invariant operators. Duke Math. J.114, 477–553 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  81. Morrey, C.B.: Functions of several variables and absolute continuity II. Duke Math.J.6, 187–215 (1940)

    Article  MathSciNet  Google Scholar 

  82. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa13, 1–48 (1959)

    MathSciNet  Google Scholar 

  83. Opic, B., Kufner, A.: Hardy-Type Inequalities. Longman Scientific & Technical, Har-low (1990) 279–317

    MATH  Google Scholar 

  84. Pokhozhaev, S.I.: On the imbedding Sobolev theorem forpl=n(Russian). In: Dokl.Conference, Sec. Math. Moscow Power Inst., pp. 158–170 (1965)

    Google Scholar 

  85. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton Univ. Press, Princeton, NJ (1951)

    MATH  Google Scholar 

  86. Sobolev, S.L.: On some estimates relating to families of functions having derivatives that are square integrable (Russian, French). Dokl. Akad. Nauk SSSR1, 267–282 (1936)

    Google Scholar 

  87. Sobolev, S.L.: On a theorem of functional analysis (Russian). Mat. Sb.46, 471–497 (1938); English transl.: Am. Math. Soc., Transl., II. Ser.34, 39–68 (1963)

    Google Scholar 

  88. Sperner, E.: Symmetrisierung für Funktionen mehrerer reeller Variablen. Manus.Math.11, 159–170 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  89. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl.110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  90. Talenti, G.: On isoperimetric theorems in mathematical physics. In: Handbook of Convex Geometry. North-Holland, Amsterdam (1993)

    Google Scholar 

  91. Talenti, G.: Inequalities in rearrangement invariant function spaces. In: Nonlinear Analysis, Function Spaces and Applications. Vol. 5. Prometheus Publ. House, Prague (1994)

    Google Scholar 

  92. Tidblom, J.: A Hardy inequality in the half-space. J. Funct. Anal.221, 482–495 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  93. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Google Scholar 

  94. Trombetti, G.: Symmetrization methods for partial differential equations. Boll.Unione Mat. Ital.3, 601–634 (2000)

    MATH  MathSciNet  Google Scholar 

  95. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math.Mech.17, 473–483 (1967)

    MATH  MathSciNet  Google Scholar 

  96. Uribe, A.: Minima of the Dirichlet Norm and Toeplitz Operators. Preprint (1985)

    Google Scholar 

  97. Vazquez, J.L., Zuazua, E.: The Hardy inequality and the asympthotic behavior of the heat equation with an inverse-square potential. J. Funct. Anal.173, 103–153 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  98. Verbitsky, I.G.: Superlinear equations, potential theory and weighted norm inequalities. In: Nonlinear Analysis, Function Spaces and Applications, Vol. 6, Acad. Sci.Czech Repub., Prague, pp. 223–269 (1999)

    Google Scholar 

  99. Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations (Russian). Dokl. Akad. Nauk SSSR138, 805–808 (1961); Englishtransl.: Sov. Math., Dokl.2, 746–749 (1961)

    MathSciNet  Google Scholar 

  100. Ziemer, W.P.: Weakly Differentiable Functions. Spriger-Verlag, New York (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cianchi, A. (2009). Quantitative Sobolev and Hardy Inequalities, and Related Symmetrization Principles. In: Maz’ya, V. (eds) Sobolev Spaces In Mathematics I. International Mathematical Series, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85648-3_4

Download citation

Publish with us

Policies and ethics