Skip to main content

Advertisement

Log in

Rearrangement Inequalities with Application to Ratios of Heat Kernels

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove rearrangement inequalities for multiple integrals, using the polarization technique. Polarization refers to rearranging a function with respect to a hyperplane. Then we derive sharp inequalities for ratios of integrals of heat kernels of Schrödinger operators, using our polarization inequalities. These ratio inequalities imply inequalities for the partition functions and extend the results of R. Bañuelos, P.J. Méndez-Hernández and D. You.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, F.J., Jr. and Lieb, E.H.: ‘Symmetric decreasing rearrangement is sometimes continuous’, J. Amer. Math. Soc. 2(4) (1989), 683–773.

    Google Scholar 

  2. Baernstein II, A.: ‘Convolution and rearrangement on the circle’, Complex Variables Theory Appl. 12(1-4) (1989), 33–37.

    Google Scholar 

  3. Baernstein II, A.: ‘A unified approach to symmetrization’, in A. Alvino et al. (eds.), Partial Differential Equations of Elliptic Type, Symposia Mathematica 35, Cambridge Univ. Press, 1995, pp. 47–91.

  4. Baernstein II, A. and Taylor, B.A.: ‘Spherical rearrangements, subharmonic functions, and *-functions in n-space”, Duke Math. J. 43(2) (1976), 245–268.

    Google Scholar 

  5. Bañuelos, R. and Méndez-Hernandéz, P.: ‘Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps’, J. Funct. Anal. 176 (2000), 368–399.

    Google Scholar 

  6. Beckner, W.: ‘Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn’, Proc. Nat. Acad. Sci. U.S.A. 89(11) (1992), 4816–4819.

    Google Scholar 

  7. Brascamp, H.J., Lieb, E.H. and Luttinger, J.M.: ‘A general rearrangement inequality for multiple integrals’, J. Funct. Anal. 17 (1974), 227–237.

    Google Scholar 

  8. Brock, F.: ‘A general rearrangement inequality à la Hardy–Littlewood’, J. Inequal. Appl. 5(4) (2000), 309–320.

    MathSciNet  MATH  Google Scholar 

  9. Brock, F. and Solynin, A.Y.: ‘An approach to symmetrization via polarization’, Trans. Amer. Math. Soc. 352(4) (2000), 1759–1796.

    Google Scholar 

  10. Burchard, A. and Schmuckenschläger, M.: ‘Comparison theorems for exit times’, Geom. Funct. Anal. 11(4) (2001), 651–692.

    Google Scholar 

  11. Christ, M.: ‘Estimates for the k-plane transform’, Indiana Univ. Math. J. 33(6) (1984), 891–910.

    Google Scholar 

  12. Draghici, C.: ‘Polarization and rearrangement inequalities for multiple integrals’, PhD Thesis, Washington University, St. Louis, 2003.

  13. Folland, G.B.: Real Analysis, Pure and Applied Mathematics, Modern Techniques and Their Applications, Wiley Interscience, New York, 1984.

    Google Scholar 

  14. Hardy, G.H., Littlewood, J.E. and Pólya, G.: ‘Some simple inequalities satisfied by convex functions’, Mess. Math. 58 (1929), 145–152.

    Google Scholar 

  15. Hardy, G.H., Littlewood, J.E. and Pólya, G.: Inequalities, Cambridge Mathematical Library, Reprint of the 1952 edn, Cambridge Univ. Press, Cambridge, 1988.

    Google Scholar 

  16. Lieb, E.H. and Loss, M.: Analysis, Graduate Studies in Mathematics 14, 2nd edn, Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  17. Luttinger, J.M.: ‘Generalized isoperimetric inequalities’, J. Math. Phys. 14 (1973), 586–593.

    Google Scholar 

  18. Luttinger, J.M.: ‘Generalized isoperimetric inequalities II, III’, J. Math. Phys. 14 (1973), 1444–1447, 1448–1450.

    Google Scholar 

  19. Marshall, A.W. and Olkin, I.: Inequalities: Theory of Majorization and its Applications, Mathematics in Science and Engineering 143, Academic Press, New York, 1979.

    Google Scholar 

  20. Morpurgo, C.: ‘Sharp inequalities for functional integrals and traces of conformally invariant operators’, Duke Math. J. 114(3) (2001), 477–554.

    Google Scholar 

  21. Pólya, G. and Szegö, G.: Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies 27, Princeton Univ. Press, Princeton, NJ, 1951.

    Google Scholar 

  22. Osserman, R.: ‘The isoperimetric inequality’, Bull. Amer. Math. Soc. 84(6) (1978), 1182–1238.

    Google Scholar 

  23. Pfiefer, R.E.: ‘Maximum and minimum sets for some geometric mean values’, J. Theoret. Probab. 3(2) (1990), 169–179.

    Google Scholar 

  24. van den Berg, M.: ‘On condensation in the free-boson gas and the spectrum of the Laplacian’, J. Statist. Phys. 31(3) (1983), 623–637.

    Google Scholar 

  25. You, D.: ‘Sharp inequalities for ratios and partition functions of Schrödinger operators’, Potential Anal. 18(3) (2001), 219–250, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Draghici.

Additional information

Mathematics Subject Classifications (2000)

26D15, 28A25, 35J10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draghici, C. Rearrangement Inequalities with Application to Ratios of Heat Kernels. Potential Anal 22, 351–374 (2005). https://doi.org/10.1007/s11118-004-1328-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-004-1328-5

Keywords

Navigation