Skip to main content

Introduction to the Different Classes of Biosynthetic Enzymes

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

Plant natural products are intimately associated with traits such as quality, yield, disease resistance, stress tolerance, color, and fragrance, in addition to being important dietary components and phytomedicines. In spite of the apparent complexity of natural product biosynthesis, much of the rich chemical diversity of the plant kingdom arises from a limited number of chemical scaffold types, modified by specific chemical substitutions such as hydroxylation, glycosylation, acylation, prenylation, and O-methylation. The molecular genetic basis underlying plant natural product chemistry has recently been the subject of concerted genomic and genetic approaches, facilitated by the fact that many of the key enzymatic steps in scaffold formation and substitution are catalyzed by proteins originating from recognizable gene families (e.g. polyketide synthase, glucosyltransferase) that have undergone significant expansion throughout plant evolution. This overview summarizes the types of enzymatic reactions involved in plant secondary metabolism from a pathway organization perspective that highlights the entry points from primary metabolism, general scaffold formation and scaffold modification (Box 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pichersky, E. and Gang, D.R. (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5, 439–445

    PubMed  CAS  Google Scholar 

  2. Ritter, H. and Schulz, G.E. (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia lyase. Plant Cell 16, 3426–3436

    PubMed  CAS  Google Scholar 

  3. Watts, K.T. et al (2006) Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem. Biol. 13, 1317–1326

    PubMed  CAS  Google Scholar 

  4. Louie, G.V. et al (2006) Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chem. Biol. 13, 1327–1338

    PubMed  CAS  Google Scholar 

  5. Baedeker, M. and Schulz, G.E. (2002) Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase. Structure 10, 61–67

    PubMed  CAS  Google Scholar 

  6. Winkel, B.S.J. (2004) Metabolic channeling in plants. Annu. Rev. Plant Biol. 55, 85–107

    PubMed  CAS  Google Scholar 

  7. Rasmussen, S. and Dixon, R.A. (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 11, 1537–1552

    PubMed  CAS  Google Scholar 

  8. Shorrosh, B.S. et al (1994) Molecular cloning, characterization and elicitation of acetyl CoA carboxylase from alfalfa. Proc. Natl. Acad. Sci. USA 91, 4323–4327

    PubMed  CAS  Google Scholar 

  9. Rodriguez-Concepcion, M. and Boronat, A. (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079–1089

    PubMed  CAS  Google Scholar 

  10. Sauret-Gueto, S. et al (2006) Plastid cues posttranscriptionally regulate the accumulation of key enzymes of the methylerythritol phosphate pathway in Arabidopsis. Plant Physiol. 141, 75–84

    PubMed  CAS  Google Scholar 

  11. Dudareva, N. et al (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. USA 102, 933–938

    PubMed  CAS  Google Scholar 

  12. Laule, O. et al (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100, 6866–6871

    PubMed  CAS  Google Scholar 

  13. Lichtenthaler, H.K. (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 47–65

    PubMed  CAS  Google Scholar 

  14. Burke, C. et al (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc. Natl. Acad. Sci. USA 96, 13062–13067

    PubMed  CAS  Google Scholar 

  15. Cheng, A.-X. et al (2007) Plant terpenoids: biosynthesis and ecological functions. J. Integrative Plant Biol. 49, 179–186

    CAS  Google Scholar 

  16. Facchini, P.J. et al (2000) Plant aromatic -amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54, 121–138

    PubMed  CAS  Google Scholar 

  17. Fecker, L.F. et al (1993) Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacumexpressing a bacterial lysine decarboxylase gene. Plant Mol. Biol 23, 11–21

    PubMed  CAS  Google Scholar 

  18. Facchini, P.J. (2001) Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 29–66

    PubMed  CAS  Google Scholar 

  19. Austin, M.B. and Noel, J.P. (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110

    PubMed  CAS  Google Scholar 

  20. Jez, J.M. et al (2001) Structure and mechanism of chalcone synthase-like polyketide synthases. J. Indus. Microbiol. Biotechnol. 27, 393

    CAS  Google Scholar 

  21. Jez, J.M. et al (2000) Structural control of polyketide formation in plant-specific polyketide synthesis. Chem. Biol. 7, 919–930

    PubMed  CAS  Google Scholar 

  22. Jez, J.M. et al (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc. Natl. Acad. Sci. USA 99, 5319–5324

    PubMed  CAS  Google Scholar 

  23. Austin, M.B. et al (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem. Biol. 11, 1179–1194

    PubMed  CAS  Google Scholar 

  24. Paniego, N.B. et al (1999) Phlorisovalerophenone synthase, a novel polyketide synthase from hop (Humulus lupulusL.) cones. Eur. J. Biochem. 262, 612–616

    PubMed  CAS  Google Scholar 

  25. Raharjo, T.J. et al (2004) Comparative proteomics of Cannabis sativaplant tissues. J. Biomol. Tech. 15, 97–106

    PubMed  Google Scholar 

  26. Tholl, D. (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9, 297–304

    PubMed  CAS  Google Scholar 

  27. Ikeda, C. et al (2007) Functional analysis of eubacterial ent-copalyl diphosphate synthase and pimara-9(11),15-diene synthase with unique primary sequences. J. Biochem. 141, 37–45

    PubMed  CAS  Google Scholar 

  28. Schwab, W. et al (2001) Mechanism of monoterpene cyclization: Stereochemical aspects of the transformation of noncyclizable substrate analogs by recombinant (-)-limonene synthase, (+)-bornyl diphosphate synthase, and (-)-pinene synthase. Arch. Biochem. Biophys. 392, 123–136

    PubMed  CAS  Google Scholar 

  29. O’Maille, P.E. et al (2006) Biosynthetic potential of sesquiterpene synthases: alternative products of tobacco 5-epi-aristolochene synthase. Arch. Biochem. Biophys. 448, 73–82

    PubMed  Google Scholar 

  30. Starks, C.M. et al (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815–1820

    PubMed  CAS  Google Scholar 

  31. Otomo, K. et al (2004) Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J. 39, 886–893

    PubMed  CAS  Google Scholar 

  32. Peters, R.J. et al (2003) Bifunctional abietadiene synthase: mutual structural dependence of the active sites for protonation-initiated and ionization-initiated cyclizations. Biochemistry 42, 2700–2707

    PubMed  CAS  Google Scholar 

  33. Dejong, J.M. et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 93, 212–214

    PubMed  CAS  Google Scholar 

  34. Wildung, M.R. and Croteau, R. (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem. 271, 9201–9204

    PubMed  CAS  Google Scholar 

  35. Kollner, T.G. et al (2004) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16, 1115–1131

    PubMed  Google Scholar 

  36. Phillips, D.R. et al (2006) Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 9, 305–314

    PubMed  CAS  Google Scholar 

  37. Xu, R. et al (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65, 261–291

    PubMed  CAS  Google Scholar 

  38. Ma, X.Y. et al (2004) Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia- the first member of a novel enzyme family. Biochim. Biophys. Acta 1702, 121–124

    PubMed  CAS  Google Scholar 

  39. Kutchan, T.M. (1993) Strictosidine: from alkaloid to enzyme to gene. Phytochemistry 32, 493–506

    PubMed  CAS  Google Scholar 

  40. Facchini, P.J. et al (2004) Can Arabidopsis make complex alkaloids. Trends Plant Sci. 9, 116–122

    PubMed  CAS  Google Scholar 

  41. De-Eknamkul, W. et al (2000) Purification and characterization of deacetylipecoside synthase from Alangium lamarckiiThw. Phytochemistry 55, 177–181

    PubMed  CAS  Google Scholar 

  42. Luk, L.Y.P. et al (2007) Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis: an enzymatic Pictet-Spengler reaction. Biochemistry 46, 10153–10161

    PubMed  CAS  Google Scholar 

  43. Samanani, N. et al (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J. 40, 302–313

    PubMed  CAS  Google Scholar 

  44. Minami, H. et al (2007) Functional analysis of norcoclaurine synthase in Coptis japonica. J. Biol. Chem. 282, 6274–6282

    PubMed  CAS  Google Scholar 

  45. Kutchan, T.M. and Dittrich, H. (1995) Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J. Biol. Chem. 270, 24475–24481

    PubMed  CAS  Google Scholar 

  46. Facchini, P.J. and St-Pierre, B. (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr. Opin. Plant Biol. 8, 657–666

    PubMed  CAS  Google Scholar 

  47. Bolwell, G.P. et al (1994) Plant cytochrome P450. Phytochemistry 37, 1491–1506

    PubMed  CAS  Google Scholar 

  48. Weisshaar, B. and Jenkins, G.I. (1998) Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1, 251–257

    PubMed  CAS  Google Scholar 

  49. Chapple, C.C. et al (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4, 1413–1424

    PubMed  CAS  Google Scholar 

  50. Holton, T.A. et al (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366, 276–279

    PubMed  CAS  Google Scholar 

  51. Collu, G. et al (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508, 215–220

    PubMed  CAS  Google Scholar 

  52. Haudenschild, C. et al (2000) Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Escherichia coliand Saccharomyces cerevisiae.Arch. Biochem. Biophys. 379, 127–136

    PubMed  CAS  Google Scholar 

  53. Takahashi, S. et al (2005) Kinetic and molecular analysis of 5-epiaristolochene-1,3-dihydroxylase, a cytochrome P450 enzyme catalyzing successive hydroxylations of sesquiterpenes. J. Biol. Chem 280, 3686–3696

    PubMed  CAS  Google Scholar 

  54. Schoendorf, A. et al (2001) Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl. Acad. Sci. USA 98, 1501–1506

    PubMed  CAS  Google Scholar 

  55. Jennewein, S. et al (2001) Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA 98, 13595–13600

    PubMed  CAS  Google Scholar 

  56. Shibuya, M. et al (2006) Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J. 273, 948–959

    PubMed  CAS  Google Scholar 

  57. Ohnishi, T. et al (2006) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18, 3275–3288

    PubMed  CAS  Google Scholar 

  58. Tian, L. et al (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc. Natl. Acad. Sci. USA 101, 402–407

    PubMed  CAS  Google Scholar 

  59. Okamoto, M. et al (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8’-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 141, 97–107

    PubMed  CAS  Google Scholar 

  60. Niemeyer, H.M. (1998) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochemistry 27, 3349–3358

    Google Scholar 

  61. Frey, M. et al (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277, 696–699

    PubMed  CAS  Google Scholar 

  62. Stumpe, M. et al (2006) Identification of an allene oxide synthase (CYP74C) that leads to formation of alpha-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato. Plant J. 47, 883–896

    PubMed  CAS  Google Scholar 

  63. Howe, G.A. and Schilmiller, A.L. (2002) Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 5, 230–236

    PubMed  CAS  Google Scholar 

  64. Park, J.H. et al (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1–12

    PubMed  Google Scholar 

  65. Rodriguez, S. et al (2003) Jasmonate-induced epoxidation of tabersonine by a cytochrome P-450 in hairy root cultures of Catharanthus roseus.Phytochemistry 64, 401–409

    PubMed  CAS  Google Scholar 

  66. Zhu, Y. et al (2006) Elongated uppermost internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442–456

    PubMed  CAS  Google Scholar 

  67. Novak, B.H. et al (2000) Morphine synthesis and biosynthesis- an update. Curr. Org. Chem. 4, 343–362

    CAS  Google Scholar 

  68. Ikezawa, N. et al (2008) Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C–C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonicacells. J. Biol. Chem. 283, 8810–8821

    PubMed  CAS  Google Scholar 

  69. Bauer, W. and Zenk, M.H. (1991) Two methylenedioxy bridge forming cytochrome P-450 dependent enzymes are involved in (S)-stylopine biosynthesis. Phytochemistry 30, 2953–2961

    CAS  Google Scholar 

  70. Clemens, S. and Barz, W. (1996) Cytoch-rome P450-dependent methylenedioxy bridge formation in Cicer arietinum.Phytochemistry 41, 457–460

    CAS  Google Scholar 

  71. Steele, C.L. et al (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 367, 146–150

    PubMed  CAS  Google Scholar 

  72. Dixon, R.A. and Ferreira, D. (2002) Genistein. Phytochemistry 60, 205–211

    PubMed  CAS  Google Scholar 

  73. Lozovaya, V.V. et al (2007) Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta 225, 665–679

    PubMed  CAS  Google Scholar 

  74. Jung, W. et al (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotechnol. 18, 208–212

    PubMed  CAS  Google Scholar 

  75. Holscher, D. and Schneider, B. (2005) The biosynthesis of 8-phenylphenalenones from Eichhornia crassipesinvolves a putative aryl migration step. Phytochemistry 66, 59–64

    PubMed  Google Scholar 

  76. Prescott, A.G. and Lloyd, M.D. (2000) The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Nat. Prod. Rep. 17, 367–383

    PubMed  CAS  Google Scholar 

  77. Springob, K. et al (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep. 20, 288–303

    PubMed  CAS  Google Scholar 

  78. Holton, T.A. and Cornish, E.C. (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071–1083

    PubMed  CAS  Google Scholar 

  79. Anzellotti, D. and Ibrahim, R.K. (2004) Molecular characterization and functional expression of flavonol 6-hydroxylase. BMC Plant Biol. 4, 20

    PubMed  Google Scholar 

  80. Saito, K. et al (1999) Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens.Plant J. 17, 181–189

    PubMed  Google Scholar 

  81. Wilmouth, R.C. et al (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana.Structure 10, 93–103

    PubMed  CAS  Google Scholar 

  82. Hashimoto, T. and Yamada, Y. (1986) Hyoscyamine 6-beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol. 81, 619–625

    PubMed  CAS  Google Scholar 

  83. Paiva, N.L. et al (1991) Stress responses in alfalfa (Medicago sativaL.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol. Biol. 17, 653–667

    PubMed  CAS  Google Scholar 

  84. Fischer, D. et al (1990) Phytoalexin synthesis in soybean: purification and characterization of NADPH:2’-hydroxydaidzein oxidoreductase from elicitor-challenged soybean cell cultures. Arch. Biochem. Biophys. 276, 390–395

    PubMed  CAS  Google Scholar 

  85. Sun, Y.J. et al (1991) Stereoisomerism in plant disease resistance: induction and isolation of the 7,2’-dihydroxy-4’,5’-methylenedioxyisoflavone oxidoreductase, an enzyme introducing chirality during synthesis of isoflavonoid phytoalexins in pea (Pisum sativumL). Arch. Biochem. Biophys. 284, 167–173

    PubMed  CAS  Google Scholar 

  86. Schlieper, D. et al (1990) Stereospecificity of hydrogen transfer by fungal and plant NADPH: isoflavone oxidoreductases. Phytochemistry 29, 1519–1524

    CAS  Google Scholar 

  87. Dinkova-Kostova, A.T. et al (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia.Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J. Biol. Chem. 271, 29473–29482

    PubMed  CAS  Google Scholar 

  88. Gang, D.R. et al (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J. Biol. Chem. 274, 7516–7527

    PubMed  CAS  Google Scholar 

  89. Gerats, A.G.M. et al (1982) Genetic control of the conversion of dihydroflavonols into flavonols and anthocyanins in flowers of Petunia hybrida. Planta 155, 364–368

    CAS  Google Scholar 

  90. Xie, D.Y. et al (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399

    PubMed  CAS  Google Scholar 

  91. Lacombe, E. et al (1997) Cinnamoyl-CoA reductase, the first committed enzyme of lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11, 429–441

    PubMed  CAS  Google Scholar 

  92. Bowles, D. et al (2006) Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 57, 567–597

    PubMed  CAS  Google Scholar 

  93. Shao, H. et al (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula.Plant Cell 17, 3141–3154

    PubMed  CAS  Google Scholar 

  94. Offen, W. et al (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25, 1396–1405

    PubMed  CAS  Google Scholar 

  95. Li, L. et al (2007) Crystal structure of Medicago truncatulaUGT85H2 – insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol. Biol. 370, 951–963

    PubMed  CAS  Google Scholar 

  96. Modolo, L.V. et al (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula.Plant Mol. Biol. 64, 499–518

    PubMed  CAS  Google Scholar 

  97. Ono, E. et al (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA 103, 11075–11080

    PubMed  CAS  Google Scholar 

  98. 98. Richman, A. et al (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana.Plant J. 41, 56–67

    PubMed  CAS  Google Scholar 

  99. Achnine, L. et al (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula.Plant J. 41, 875–887

    PubMed  CAS  Google Scholar 

  100. Jackson, R.G. et al (2002) Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J. 32, 573–583

    PubMed  CAS  Google Scholar 

  101. Poppenberger, B. et al (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. USA 102, 15253–15258

    PubMed  CAS  Google Scholar 

  102. Hou, B. et al (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana.J. Biol. Chem. 279, 47822–47832

    PubMed  CAS  Google Scholar 

  103. Brazier-Hicks, M. et al (2007) Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. USA 104, 20238–20243

    PubMed  CAS  Google Scholar 

  104. Marillia, E.F. et al (2001) Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli.Physiol. Plant. 113, 176–184

    PubMed  CAS  Google Scholar 

  105. Grubb, C.D. et al (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 40, 893–908

    PubMed  CAS  Google Scholar 

  106. Ibrahim, R.K. et al (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol. Biol. 36, 1–10

    PubMed  CAS  Google Scholar 

  107. Ibrahim, R.K. et al (1987) Enzymology and compartmentation of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochemistry 26, 1237–1245

    Google Scholar 

  108. Noel, J.P. et al (2003) Structural, functional, and evolutionary basis for methylation of plant small molecules. Rec. Adv. Phytochem. 37, 37–58

    CAS  Google Scholar 

  109. Preisig, C.L. et al (1989) Purification and characterization of S-adenosyl-L-methionine: 6a-hydroxymaackiain 3-O-methyltransferase from Pisum sativum.Plant Physiol. 91, 559–566

    PubMed  CAS  Google Scholar 

  110. Guo, D. et al (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13, 73–88

    PubMed  CAS  Google Scholar 

  111. Frick, S. and Kutchan, T.M. (1999) Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant J. 17, 329–339

    PubMed  CAS  Google Scholar 

  112. Teuber, M. et al (2007) Putrescine N-methyltransferases – a structure-function analysis. Plant Mol. Biol. 63, 787–801

    PubMed  CAS  Google Scholar 

  113. Varin, L. et al (1987) Enzymatic synthesis of sulphated flavonoids in Flaveria spp. Phytochemistry 26, 135–138

    Google Scholar 

  114. Okada, K. et al (2004) The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana. Plant Mol. Biol. 55, 567–577

    PubMed  CAS  Google Scholar 

  115. Tian, L. et al (2008) Biosynthesis and genetic engineering of health-promoting plant natural products. Phytochem. Rev. 7, 445–465

    CAS  Google Scholar 

  116. Sasaki, K. et al (2008) Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens. Plant Physiol. 146, 1075–1084

    PubMed  CAS  Google Scholar 

  117. D’Auria, J.C. (2006) Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9, 331–340

    PubMed  Google Scholar 

  118. Yu, X.-H. et al. (2008) Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. Plant J. 55, 382–396

    Google Scholar 

  119. Milkowski, C. and Strack, D. (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65, 517–524

    PubMed  CAS  Google Scholar 

  120. Li, A.X. and Steffens, J.C. (2000) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc. Natl. Acad. Sci. USA 97, 6902–6907

    PubMed  CAS  Google Scholar 

  121. Lehfeldt, C. et al (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12, 1295–1306

    PubMed  CAS  Google Scholar 

  122. Deavours, B.E. et al (2006) Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula. Plant Mol. Biol. 62, 715–733

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Dixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Modolo, L.V., Reichert, A.I., Dixon, R.A. (2009). Introduction to the Different Classes of Biosynthetic Enzymes. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_6

Download citation

Publish with us

Policies and ethics