Skip to main content

Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging

  • Chapter
  • First Online:
Neutron Imaging and Applications

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

Neutron stimulated emission computed tomography (NSECT) is being developed as a new medical-imaging technique to quantify spatial distributions of elements in a sample through inelastic scattering of fast neutrons and detection of the resulting gamma rays. It has the potential to diagnose several disorders in the human body that are characterized by changes in element concentration in the diseased tissue. NSECT is sensitive to several naturally occurring elements in the human body that demonstrate concentration changes in the presence of diseases. NSECT, therefore, has the potential to noninvasively diagnose such disorders with radiation dose that is comparable to other ionizing imaging modalities. This chapter discusses the development and progress of NSECT and presents an overview of the current status of the imaging technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Anderson, S.B. Osborn, R.W. Tomlinson, D. Newton, J. Rundo, L. Salmon, and J.W. Smith, Neutron-Activation Analysis in Man in Vivo. a New Technique in Medical Investigation, Lancet 2, 1201–1205, (Dec 5 1964).

    Article  CAS  Google Scholar 

  2. M.J. Chamberlain, J.H. Fremlin, D.K. Peters, and H. Philip, Total body sodium by whole body neutron activation in the living subject: further evidence for non-exchangeable sodium pool, Br. Med. J. 2, 583–585 (Jun 8, 1968).

    Article  CAS  Google Scholar 

  3. M.J. Chamberlain, J.H. Fremlin, D.K. Peters, and H. Philip, Total body calcium by whole body neutron activation: new technique for study of bone disease, Br. Med. J. 2, 581–3, Jun 8 1968.

    Article  CAS  Google Scholar 

  4. M.J. Chamberlain, J.H. Fremlin, D.K. Peters, and H. Philip, Measurement of whole body calcium and sodium by neutron activation analysis in the living subject, Strahlentherapie [Sonderb], 67, 178–85, 1968.

    CAS  Google Scholar 

  5. M.J. Chamberlain, Whole-body neutron activation analysis, Proc. R. Soc. Med. 62, 370–3 (Apr 1969).

    CAS  Google Scholar 

  6. M.J. Chamberlain, J.H. Fremlin, I. Holloway, and D.K. Peters, Use of the cyclotron for whole body neutron activation analysis: theoretical and practical considerations, Int. J. Appl. Radiat. Isot. 21, 725–34 (Dec 1970).

    Article  CAS  Google Scholar 

  7. M.J. Chamberlain, J.H. Fremlin, D.K. Peters, and H. Philip, Applications of the whole-body counter in total-body neutron activation analysis, Br. J. Radiol. 43, 287–8 (Apr 1970).

    CAS  Google Scholar 

  8. M.J. Chamberlain and J.H. Fremlin, Measurement of whole-body nitrogen by pulsed neutron activation analysis, Strahlentherapie [Sonderb] 72, 88–93 (1972).

    CAS  Google Scholar 

  9. S.H. Cohn and C.S. Dombrowski, Measurement of total-body calcium, sodium, chlorine, nitrogen, and phosphorus in man by in vivo neutron activation analysis, J. Nucl. Med. 12, 499–505 (Jul 1971).

    CAS  Google Scholar 

  10. D. Vartsky, K.J. Ellis, and S.H. Cohn, In vivo measurement of body nitrogen by analysis of prompt gammas from neutron capture, J. Nucl. Med. 20, 1158–1155 (Nov 1979).

    CAS  Google Scholar 

  11. C.L. Hollas, L.E. Ussery, K.B. Butterfield, and R.E. Morgado, A method for in vivo determination of carbon and oxygen using prompt gamma radiations induced by 14.7-MeV neutrons, Basic Life Sci. 55, 395–400 (1990).

    CAS  Google Scholar 

  12. H.C. Biggin, N.S. Chen, K.V. Ettinger, J.H. Fremlin, W.D. Morgan, R. Nowotny, M.J. Chamberlain, and T.C. Harvey, Cadmium by in vivo neutron activation analysis, in J. Radioanal. Chem, v. 19, no. 2, pp. 207–214; International colloquium on activation analysis of very low amounts of elements; 2 Oct 1972; Saclay, France United Kingdom (1974).

    Article  Google Scholar 

  13. M.L. Arnold, F.E. McNeill, I.M. Stronach, A. Pejovic-Milic, D.R. Chettle, and A. Waker, An accelerator based system for in vivo neutron activation analysis measurements of manganese in human hand bones, Med. Phys. 29, 2718–24 (Nov 2002).

    Article  CAS  Google Scholar 

  14. A. Garg, V. Singh, et al., An elemental correlation study in cancerous and normal breast tissue with successive clinical stages by neutron activation analysis, Biol. Trace Element Res. 46, 185–202 (1994).

    Article  CAS  Google Scholar 

  15. A. Danielsen and E. Steinnes, A study of some selected trace elements in normal and cancerous tissue by neutron activation analysis, J. Nucl. Med. 11, 260–4 (Jun 1970).

    CAS  Google Scholar 

  16. K.H. Ng, D.A. Bradley, and L.M. Looi, Elevated trace element concentrations in malignant breast tissues, Br. J. Radiol. 70, 375–82 (Apr 1997).

    CAS  Google Scholar 

  17. K.H. Ng, D.A. Bradley, L.M. Looi, C.S. Mahmood, and A.K. Wood, Differentiation of elemental composition of normal and malignant breast tissue by instrumental neutron activation analysis, Appl. Radiat. Isot. 44, 511–6 (Mar 1993).

    Article  CAS  Google Scholar 

  18. K.J. Ellis, Human body composition: in vivo methods, Physiol. Rev. 80, 649–80 (Apr 2000).

    CAS  Google Scholar 

  19. J.F. Sutcliffe, A review of in vivo experimental methods to determine the composition of the human body, Phys. Med. Biol. 41, 791–833 (May 1996).

    Article  CAS  Google Scholar 

  20. E. Witkowska, K. Szczepaniak, and M. Biziuk, Some applications of neutron activation analysis: A review, J. Radioanal. Nucl. Chem. 265, 141–150 (2005).

    Article  CAS  Google Scholar 

  21. S. Mattsson and B.J. Thomas, Development of methods for body composition studies, Phys. Med. Biol. 51, R203–28 (Jul 7 2006).

    Article  CAS  Google Scholar 

  22. K. Kyere, B. Oldroyd, C.B. Oxby, L. Burkinshaw, R.E. Ellis, and G.L. Hill, The feasibility of measuring total body carbon by counting neutron inelastic scatter gamma rays, Phys. Med. Biol. 27, 805–17 (Jun 1982).

    Article  CAS  Google Scholar 

  23. J.J. Kehayias, S.B. Heymsfield, A.F. LoMonte, J. Wang, and R.N. Pierson, Jr., In vivo determination of body fat by measuring total body carbon, Am. J. Clin. Nutr. 53, 1339–44 (Jun 1991).

    CAS  Google Scholar 

  24. J.J. Kehayias, Aging and body composition: possibilities for future studies, J. Nutr. 123, 454–8 (Feb 1993).

    CAS  Google Scholar 

  25. J.J. Kehayias, H. Zhuang, V. Hughes, and L. Dowling, Assessment of body fat and lean in the elderly by measuring body carbon and oxygen: validation against hydrodensitometry, Appl. Radiat. Isot. 49, 723–5 (May-Jun 1998).

    Article  CAS  Google Scholar 

  26. J.J. Kehayias, S. Valtuena, A.B. Waitekus, C.A. Sheahan, and M. O'Neill, In vivo elemental partition analysis using fast neutrons. A tool for testing the efficacy of new clinical interventions, Ann. N Y. Acad. Sci. 904, 140–7 (May 2000).

    Article  CAS  Google Scholar 

  27. L. Wielopolski, R.C. Ancona, R.T. Mossey, A.N. Vaswani, and S.H. Cohn, Nuclear resonance scattering measurement of human iron stores, Med. Phys. 12, 401–4 (Jul-Aug 1985).

    Article  CAS  Google Scholar 

  28. L. Wielopolski and E.C. Zaino, Noninvasive in-vivo measurement of hepatic and cardiac iron, J. Nucl. Med. 33, 1278–82 (Jul 1992).

    CAS  Google Scholar 

  29. L. Wielopolski, Feasibility of measuring iron in vivo using fast 14 MeV neutrons, Cooley’s Anemia Foundation Inc. BNL-7980–2005 (2005).

    Google Scholar 

  30. C.E. Floyd, C.R. Howell, B.P. Harrawood, A.S. Crowell, A.J. Kapadia, R. Macri, J.Q. Xia, R. Pedroni, J. Bowsher, M.R. Kiser, G.D. Tourassi, W. Tornow, and R. Walter, Neutron Stimulated Emission Computed Tomography of Stable Isotopes, in SPIE Symposium on Medical Imaging, San Diego, CA, pp. 248–254 (2004).

    Google Scholar 

  31. C.E. Floyd, J.E. Bender, A. Sharma, A. Kapadia, J. Xia, B. Harrawood, G.D. Tourassi, J. Lo, and C.R. Howell, Introduction to Neutron Stimulated Emission Computed Tomography. Phys. Med. Biol. 50 (14), 3375–90 (2005).

    Google Scholar 

  32. A.J. Kapadia, A.C. Sharma, J.E. Bender, G.D. Tourassi, C.R. Howell, A.S. Crowell, M.R. Kiser, B.P. Harrawood, and C.E. Floyd, Neutron Stimulated Emission Computed Tomography for Diagnosis of Breast Cancer, IEEE Trans Nucl. Sci. 55, 501–509 (2008).

    Article  CAS  Google Scholar 

  33. A.J. Kapadia, G.D. Tourassi, A.C. Sharma, A.S. Crowell, M.R. Kiser, and C.R. Howell, Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy, Phys. Med. Biol. 53, 2633–2649 (2008).

    Article  CAS  Google Scholar 

  34. C.E. Floyd, J.E. Bender, A.C. Sharma, A.J. Kapadia, J.Q. Xia, B.P. Harrawood, G.D. Tourassi, J.Y. Lo, A.S. Crowell, and C.R. Howell, Introduction to neutron stimulated emission computed tomography, Phys. Med. Biol. 51, 3375–3390 (2006).

    Article  Google Scholar 

  35. M.N. Wernick and J.N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT: Academic Press, San Diego (2004).

    Google Scholar 

  36. A. Kak and M. Slaney, Principles of computerized tomographic imaging vol. 33. Philadelphia: society for industrial and applied mathematics (2001).

    Google Scholar 

  37. J.E. Bender, C.E. Floyd, B.P. Harrawood, A.J. Kapadia, A.C. Sharma, and J.L. Jesneck, The effect of detector resolution for quantitative analysis of neutron stimulated emission computed tomography, in SPIE Medical Imaging, pp. 1597–1605 (2006).

    Google Scholar 

  38. L.W. Powell, Diagnosis of hemochromatosis, Semin. Gastrointest Dis. 13, 80–8 (Apr 2002).

    Google Scholar 

  39. S. Joffe, Hemochromatosis, N. Lamki, B. Coombs, U. Schmiedl, R.M. Krasny, and J. Karani, Eds., Medscape emedicine, emedicine.medscape.com/article/369012-overview, Mar 11, 2005.

    Google Scholar 

  40. L. Powell, Hemochromatosis, in D. Kasper, Fawci, AS, Longo, DL, Braunwald, E, Hauser, SL, Jameson, JL, Ed.,Harrison's Principles of Internal Medicine, 16 ed. vol. 2, McGraw Hill, New York, NY, pp. 2298–2303 (2005).

    Google Scholar 

  41. G. Brewer, Wilson Disease, in D. Kasper, Fawci, AS, Longo, DL, Braunwald, E, Hauser, SL, Jameson, JL, Ed., Harrison's Principals of Internal Medicine, 16 ed. vol. 2, NY: McGraw Hill, pp. 2313–2315 (2005).

    Google Scholar 

  42. H. Mussalo-Rauhamaa, S. Piepponen, J. Lehto, R. Kauppila, and O. Auvinen, Cu, Zn, Se and Mg concentrations in breast fat of Finnish breast cancer patients and healthy controls, Trace Elements Med. 10, 13–15 (1993).

    Google Scholar 

  43. K. Geraki, M.J. Farquharson, and D.A. Bradley, X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue, Phys. Med. Biol. 49, 99–110 (Jan 7 2004).

    Article  CAS  Google Scholar 

  44. U. Majewska, D. Banas, J. Braziewicz, S. Gozdz, A. Kubala-Kukus, and M. Kucharzewski, Trace element concentration distributions in breast, lung and colon tissues, Phys. Med. Biol. 52, 3895–911 (Jul 7 2007).

    Article  CAS  Google Scholar 

  45. K. Geraki, M.J. Farquharson, and D.A. Bradley, Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study, Phys. Med. Biol. 47, 2327–39 (Jul 7 2002).

    Article  CAS  Google Scholar 

  46. S.L. Rizk and H.H. Sky-Peck, Comparison between concentrations of trace elements in normal and neoplastic human breast tissue, Cancer. Res. 44, 5390–4 (Nov 1984).

    CAS  Google Scholar 

  47. S. Rizk and H. Sky-Peck, Comparison between Concetrations of Trace Elements in Normal and Neoplastic Human Breast Tissue, Cancer. Research. 44, 5390–539 (1984).

    CAS  Google Scholar 

  48. P.M. Santoliquido, H.W. Southwick, and J.H. Olwin, Trace metal levels in cancer of the breast, Surg. Gynecol. Obstet. 142, 65–70 (Jan 1976).

    CAS  Google Scholar 

  49. M. Brys, A.D. Nawrocka, E. Miekos, C. Zydek, M. Foksinski, A. Barecki, and W.M. Krajewska, Zinc and cadmium analysis in human prostate neoplasms, Biol. Trace. Elem. Res. 59, 145–52 (Winter 1997).

    Article  CAS  Google Scholar 

  50. A. Feustel, R. Wennrich, D. Steiniger, and P. Klauss, Zinc and cadmium concentration in prostatic carcinoma of different histological grading in comparison to normal prostate tissue and adenofibromyomatosis (BPH), Urol. Res. 10, 301–3 (1982).

    Article  CAS  Google Scholar 

  51. V. Zaichick, T.V. Sviridova, and S.V. Zaichick, Zinc in the human prostate gland: normal, hyperplastic and cancerous, Int. Urol. Nephrol. 29, 565–74 (1997).

    Article  Google Scholar 

  52. E. Andrasi, M. Suhajda, I. Saray, L. Bezur, L. Ernyei, and A. Reffy, Concentration of elements in human brain: glioblastoma multiforme, Sci. Total. Environ. 139/140, 399–402 (Nov 1 1993).

    Article  Google Scholar 

  53. M. Persigehl, H. Schicha, K. Kasperek, and H.J. Klein, Trace element concentration in human organs in dependence of age, Beitr. Path. 161, 209–220 (1977).

    Article  CAS  Google Scholar 

  54. E.J. Margalioth, J.G. Schenker, and M. Chevion, Copper and zinc levels in normal and malignant tissues, Cancer 52, 868–72 (Sep 1 1983).

    Article  CAS  Google Scholar 

  55. P. Ghadirian, P. Maisonneuve, C. Perret, G. Kennedy, P. Boyle, D. Krewski, and A. Lacroix, A case-control study of toenail selenium and cancer of the breast, colon, and prostate, Cancer. Detect. Prev. 24, 305–13 (2000).

    CAS  Google Scholar 

  56. I. Kato, A.M. Dnistrian, M. Schwartz, P. Toniolo, K. Koenig, R.E. Shore, A. Zeleniuch-Jacquotte, A. Akhmedkhanov, and E. Riboli, Iron intake, body iron stores and colorectal cancer risk in women: a nested case-control study, Int. J. Cancer. 80, 693–8 (Mar 1 1999).

    Article  CAS  Google Scholar 

  57. R.L. Nelson, F.G. Davis, E. Sutter, L.H. Sobin, J.W. Kikendall, and P. Bowen, Body iron stores and risk of colonic neoplasia, J. Natl. Cancer. Inst. 86, 455–60 (Mar 16 1994).

    Article  CAS  Google Scholar 

  58. K. Witkowski, A. Kozlowski, M. Pardela, J. Piecuch, and P. Walichiewicz, [Level of copper in plasma and tissue of patients with esophageal and large bowel cancer], Wiad. Lek. 46, 586–8 (Aug 1993).

    CAS  Google Scholar 

  59. K.Q. Xiao and W.J. Henderson, [Electron microscopy microanalysis and quantitative detection of trace elements in carcinoma of the colon], Zhonghua Bing Li Xue Za Zhi 21, 142–5 (Jun 1992).

    CAS  Google Scholar 

  60. W.P. Banner, J.J. DeCosse, Q.H. Tan, and M.S. Zedeck, Selective distribution of selenium in colon parallels its antitumor activity, Carcinogenesis 5, 1543–6 (Dec 1984).

    Article  CAS  Google Scholar 

  61. G.C. Gregoriadis, N.S. Apostolidis, A.N. Romanos, and T.P. Paradellis, A comparative study of trace elements in normal and cancerous colorectal tissues, Cancer 52, 508–19 (Aug 1 1983).

    Article  CAS  Google Scholar 

  62. Z.M. Bataineh, I.H. Bani Hani, and J.R. Al-Alami, Zinc in normal and pathological human prostate gland, Saudi. Med. J. 23, 218–20 (Feb 2002).

    Google Scholar 

  63. A. Feustel, R. Wennrich, and H. Dittrich, Investigations of trace elements in metastases and primary carcinoma of the prostate, Urol. Res. 17, 107–9 (1989).

    CAS  Google Scholar 

  64. J.O. Ogunlewe and D.N. Osegbe, Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate, Cancer 63, 1388–92 (Apr 1 1989).

    Article  CAS  Google Scholar 

  65. I. Romics and L. Katchalova, Spectrographic determination of zinc in the tissues of adenoma and carcinoma of the prostate, Int. Urol. Nephrol. 15, 171–6 (1983).

    Article  CAS  Google Scholar 

  66. M. Yaman, D. Atici, S. Bakirdere, and I. Akdeniz, Comparison of trace metal concentrations in malign and benign human prostate, J. Med. Chem. 48, 630–634 (2005).

    Article  CAS  Google Scholar 

  67. F.K. Habib, G.L. Hammond, I.R. Lee, J.B. Dawson, M.K. Mason, P.H. Smith, S.R.Y.K. Stitch, A.G. Meade, E.P. Rack, and A.J. Blotcky, Metal-androgen interrelationships in carcinoma and hyperplasia of the human prostate, J. Endocrinol., 61 (1), 133–41 (1976).

    Google Scholar 

  68. H. Kubo, S. Hashimoto, and A. Ishibashi, Simultaneous determinations of Fe, Cu, Zn, and Br concentrations in human tissue sections, Med. Phys. 3, 204–9 (Jul-Aug 1976).

    Article  CAS  Google Scholar 

  69. G.M. Brittenham and D.G. Badman, Noninvasive measurement of iron: report of an NIDDK workshop, Blood 101, 15–9 (Jan 1 2003).

    Article  CAS  Google Scholar 

  70. J.M. Alustiza, J. Artetxe, A. Castiella, C. Agirre, J.I. Emparanza, P. Otazua, M. Garcia-Bengoechea, J. Barrio, F. Mujica, and J.A. Recondo, MR quantification of hepatic iron concentration, Radiology 230, 479–84 (Feb 2004).

    Article  Google Scholar 

  71. W.F. Avrin and S. Kumar, Noninvasive liver-iron measurements with a room-temperature susceptometer, Physiol. Meas. 28, 349–61 (Apr 2007).

    Article  Google Scholar 

  72. H.L. Bonkovsky, R.B. Rubin, E.E. Cable, A. Davidoff, T.H. Rijcken, and D.D. Stark, Hepatic iron concentration: noninvasive estimation by means of MR imaging techniques, Radiology 212, 227–34 (Jul 1999).

    CAS  Google Scholar 

  73. G.M. Brittenham, S. Sheth, C.J. Allen, and D.E. Farrell, Noninvasive methods for quantitative assessment of transfusional iron overload in sickle cell disease, Semin. Hematol. 38, 37–56 (Jan 2001).

    Article  CAS  Google Scholar 

  74. E. Cecchin, S. De Marchi, F. Querin, M.G. Marin, R. Fiorentino, and F. Tesio, Efficacy of hepatic computed tomography to detect iron overload in chronic hemodialysis, Kidney. Int. 37, 943–50 (Mar 1990).

    Article  CAS  Google Scholar 

  75. R.W. Chapman, G. Williams, G. Bydder, R. Dick, S. Sherlock, and L. Kreel, Computed tomography for determining liver iron content in primary haemochromatosis, Br. Med. J. 280, 440–2 (Feb 16 1980).

    Article  CAS  Google Scholar 

  76. J.L. Chezmar, R.C. Nelson, J.A. Malko, and M.E. Bernardino, Hepatic iron overload: diagnosis and quantification by noninvasive imaging, Gastrointest. Radiol. 15, 27–31 (Winter 1990).

    Article  CAS  Google Scholar 

  77. R.M. Dixon, P. Styles, F.N. al-Refaie, G.J. Kemp, S.M. Donohue, B. Wonke, A.V. Hoffbrand, G.K. Radda, and B. Rajagopalan, Assessment of hepatic iron overload in thalassemic patients by magnetic resonance spectroscopy, Hepatology 19, 904–10 (Apr 1994).

    Article  CAS  Google Scholar 

  78. Y. Gandon, D. Olivie, D. Guyader, C. Aube, F. Oberti, V. Sebille, and Y. Deugnier, Non-invasive assessment of hepatic iron stores by MRI., Lancet 363, 357–362 (Jan 31, 2004 2004).

    Article  CAS  Google Scholar 

  79. D. Guyader, Y. Gandon, J.Y. Robert, J.F. Heautot, H. Jouanolle, C. Jacquelinet, M. Messner, Y. Deugnier, and P. Brissot, Magnetic resonance imaging and assessment of liver iron content in genetic hemochromatosis, J Hepatol 15, 304–8 (Jul 1992).

    Article  CAS  Google Scholar 

  80. J.M. Howard, C.N. Ghent, L.S. Carey, P.R. Flanagan, and L.S. Valberg, Diagnostic efficacy of hepatic computed tomography in the detection of body iron overload, Gastroenterology 84, 209–15 (Feb 1983).

    CAS  Google Scholar 

  81. P. Liu, M. Henkelman, J. Joshi, P. Hardy, J. Butany, M. Iwanochko, M. Clauberg, M. Dhar, D. Mai, S. Waien, and N. Olivieri, Quantification of cardiac and tissue iron by nuclear magnetic resonance relaxometry in a nvel murine thalassemia-cardiac iron overload model, Can. J. Cardiol. 12, 155–64 (Feb 1996).

    CAS  Google Scholar 

  82. P. Nielsen, R. Engelhardt, M. Duerken, G.E. Janka, and R. Fischer, Using SQUID biomagnetic liver susceptometry in the treatment of thalassemia and other iron loading diseases, Transfus. Sci. 23, 257–8 (Dec 2000).

    Article  CAS  Google Scholar 

  83. P. Nielsen, R. Engelhardt, J. Dullmann, and R. Fischer, Non-invasive liver iron quantification by SQUID-biosusceptometry and serum ferritin iron as new diagnostic parameters in hereditary hemochromatosis, Blood Cells Mol. Dis. 29, 451–8 (Nov-Dec 2002).

    Article  CAS  Google Scholar 

  84. P. Nielsen, U. Kordes, R. Fischer, R. Engelhardt, and G.E. Janka, [SQUID-biosusceptometry in iron overloaded patients with hematologic diseases], Klin Padiatr 214, 218–22 (Jul-Aug 2002).

    Article  CAS  Google Scholar 

  85. H. Perrimond, C. Chagnon, I. Moulanier, G. Michel, H. Guidicelli, and P.J. Bernard, The value of nuclear magnetic resonance in the study of iron overload in thalassemia patients, Ann. Pediatr. (Paris) 38, 175–84 (Mar 1991).

    CAS  Google Scholar 

  86. S. Sheth, SQUID biosusceptometry in the measurement of hepatic iron, Pediatr. Radiol. 33, 373–7 (Jun 2003).

    Google Scholar 

  87. D. Vartsky, K.J. Ellis, D.M. Hull, and S.H. Cohn, Nuclear resonant scattering of gamma rays – a new technique for in vivo measurement of body iron stores, Phys. Med. Biol. 24, 689–701 (Jul 1979).

    Article  CAS  Google Scholar 

  88. D. Vartsky, L. Wielopolski, K.J. Ellis, and S.H. Cohn, The Use of Nuclear Resonant Scattering of Gamma-Rays for Invivo Measurement of Iron, Nucl. Instrum. Meth. Phys. Res. 193, 359–364 (1982).

    Article  CAS  Google Scholar 

  89. E. Angelucci, A. Giovagnoni, G. Valeri, E. Paci, M. Ripalti, P. Muretto, C. McLaren, G.M. Brittenham, and G. Lucarelli, Limitations of magnetic resonance imaging in measurement of hepatic iron, Blood  90, 4736–42 (Dec 15 1997).

    CAS  Google Scholar 

  90. Z.J. Wang, J.C. Haselgrove, M.B. Martin, A.M. Hubbard, S. Li, K. Loomes, J.R. Moore, H. Zhao, and A.R. Cohen, Evaluation of iron overload by single voxel MRS measurement of liver T2, J. Magn. Reson. Imaging 15, 395–400 (Apr 2002).

    Article  Google Scholar 

  91. A.J. Kapadia, A.C. Sharma, G.D. Tourassi, J.E. Bender, A.S. Crowell, M.R. Kiser, C.R. Howell, and C.E. Floyd, Neutron Spectroscopy of Mouse Using Neutron Stimulated Emission Computed Tomography (NSECT), in IEEE Nuclear Science Symposium, Medical Imaging Conference, San Diego, CA, pp. 3546–3548 (2006).

    Google Scholar 

  92. A.C. Sharma, G.D. Tourassi, A.J. Kapadia, A.S. Crowell, M.R. Kiser, A. Hutcheson, B.P. Harrawood, C.R. Howell, and C.E. Floyd, Elemental Spectrum of a Mouse Obtained via Neutron Stimulation., in 2007 SPIE Symposium on Medical Imaging, San Diego, CA, p. 65100 K (2007).

    Google Scholar 

  93. C.E. Floyd, A.C. Sharma, J.E. Bender, A.J. Kapadia, J.Q. Xia, B.P. Harrawood, G.D. Tourassi, J.Y. Lo, M.R. Kiser, A.S. Crowell, R.S. Pedroni, R.A. Macri, S. Tajima, and C.R. Howell, Neutron Stimulated Emission Computed Tomography: Background Corrections, Nucl. Instrum. Meth. Phys. Res. Sect. B 254, 329–336 (2007).

    Article  CAS  Google Scholar 

  94. C.E. Floyd, A.J. Kapadia, J.E. Bender, A.C. Sharma, J.Q. Xia, B.P. Harrawood, G.D. Tourassi, J.Y. Lo, A.S. Crowell, M.R. Kiser, and C.R. Howell, Neutron Stimulated Emission Computed Tomography of a Multi-Element Phantom, Phys. Med. Biol. 53, 2313–2326 (2008).

    Article  Google Scholar 

  95. K. Lange and R. Carson, EM reconstruction Algorithms for Emission and Transmission Tomography, Journal of Computer Assisted Tomography  8, 306–316 (1984).

    CAS  Google Scholar 

  96. A.J. Kapadia, Accuracy and Patient Dose in Neutron Stimulated Emission Computed Tomography for Diagnosis of Liver Iron Overload: Simulations in GEANT4, in Biomedical Engineering. vol. PhD, Duke University, Durham, NC (2007).

    Google Scholar 

  97. W.A. Watson, III, J. Chen, G. Heyes, E. Jastrzembski, and D. Quarrie, CODA: a scalable, distributed data acquisition system, in IEEE Transactions on Nuclear Science, Vancouver, BC, Canada, pp. 61–68 (1994).

    Google Scholar 

  98. R. Fox, C. Bolen, K. Orji, and J. Venema, NSCLSpecTcl Meeting the Needs of Preliminary Nuclear Physics Data Analysis in 11'th Annual Tcl/Tk Conference New Orleans, Louisiana (2004).

    Google Scholar 

  99. RSNA, Radiation Exposure in X-ray Examinations, in American College of Radiology (ACR) and the Radiological Society of North America (RSNA) (2007).

    Google Scholar 

  100. A.C. Sharma, B.P. Harrawood, J.E. Bender, G.D. Tourassi, and A.J. Kapadia, Neutron stimulated emission computed tomography: a Monte Carlo simulation approach, Phys. Med. Biol. 52, 6117–31 (Oct 21 2007).

    Article  CAS  Google Scholar 

  101. J.E. Bender, A.J. Kapadia, A.C. Sharma, G.D. Tourassi, B.P. Harrawood, and C.E. Floyd, Breast cancer detection using Neutron Stimulated Emission Computed Tomography: prominent elements and dose requirements, Med. Phys. 34, 3866–3871 (2007).

    Article  Google Scholar 

  102. A.J. Kapadia, C.E. Floyd, C.R. Howell, and B.P. Harrawood, Sampling Requirements for Neutron Stimulated Emission Computed Tomography, in RSNA, Physics (Digital Imaging, PACS) session Chicago, IL (2004).

    Google Scholar 

Download references

Acknowledgment

The author would like to acknowledge and thank all the members of the Duke Advanced Imaging Laboratories (DAILabs) and Triangle Universities Nuclear Laboratory (TUNL) who have been involved in the development of NSECT, especially Georgia Tourassi, Amy Sharma, and Janelle Bender for their analytical contribution and deep involvement in NSECT; Brian Harrawood for his unparalleled computing support; Calvin Howell, Alexander Crowell, Matthew Kiser, and Robert Macri for their help and guidance with NSECT acquisition experiments; and Anton Tonchev and Anthony Hutcheson for their help with gamma detector setup and management. Finally, the author would like to express his deep gratitude to Dr. Carey Floyd, the pioneer of NSECT, in whose memory and name this research continues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Kapadia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kapadia, A.J. (2009). Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging. In: Bilheux, H., McGreevy, R., Anderson, I. (eds) Neutron Imaging and Applications. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78693-3_15

Download citation

Publish with us

Policies and ethics