Skip to main content

Decomposition of plant litter involves the physical and chemical processes that reduce litter to CO2, water, and mineral nutrients. It is a key process in the nutrient cycle of most terrestrial ecosystems, and the amount of carbon returned to the atmosphere by decomposition of dead organic matter is an important component of the global carbon budget (Sect. 2.6 of Chapter 10B on ecosystem and global processes; Chapin et al. 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79: 439–449.

    Article  Google Scholar 

  • Aerts, R. & De Caluwe, H. 1997. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78: 244–260.

    Article  Google Scholar 

  • Attiwell, P.M. & Adams, M.A. 1993. Nutrient cycling in forests. New Phytol. 124: 561–582.

    Article  Google Scholar 

  • Austin, A.T. & Vivanco, L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442: 555–558

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, I.T., Olson, R.K., & Reiners, W.A. 1983. Protein-binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15: 419–423.

    Article  CAS  Google Scholar 

  • Berendse, F., Bobbink, R., & Rouwenhorst, G. 1989. A comparative study on nutrient cycling in wet heathland ecosystems. II. Litter decomposition and nutrient mineralization. Oecologia 78: 338–348.

    Article  Google Scholar 

  • Berg, B. & Staaf, H. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 33: 163–178.

    CAS  Google Scholar 

  • Bottner, P., Cortez, J., & Sallih, Z. 1991. Effect of living roots on carbon and nitrogen of the soil microbial biomass. In: Plant root growth, D. Atkinson (ed.). Blackwell Scientific, London, pp. 201–210.

    Google Scholar 

  • Bradley, R.L. & Fyles, J.W. 1996. Interactions between tree seedling roots and humus forms in the control of soil C and N cycling. Biol. Fertil. Soils 23: 70–79.

    Article  Google Scholar 

  • Bryant, J.P., Chapin III, F.S., & Klein, D.R.. 1983. Carbon/nutrient balance of boreal plants in relation to herbivory. Oikos 40: 357–368.

    Article  CAS  Google Scholar 

  • Carney, K.M., Hungate, B.A., Drake, B.G., & Megonigal, J.P. 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 104: 4990–4995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers, J.Q., Higuchi, N., Schimel, J.P., Ferreira, L.V., & Melack, J.M. 2000. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122: 380–388

    Article  Google Scholar 

  • Chapin III, F.S., Matson, P.A., & Mooney, H.A. 2002. Principles of terrestrial ecosystem ecology. Springer-Verlag, New York.

    Google Scholar 

  • Cheng, W. & Coleman, D.C. 1990. Effect of living roots on soil organic matter decomposition. Soil Biol. Biochem. 22: 781–787.

    Article  Google Scholar 

  • Clarholm, M. 1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17: 181–187.

    Article  CAS  Google Scholar 

  • Colpaert, J.V. & Van Tichelen, K.K. 1996. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes. New Phytol. 134: 123–132.

    Article  Google Scholar 

  • Cornelissen, J.H.C. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84: 573–582.

    Article  Google Scholar 

  • Cornelissen, J.H.C. & Thompson, K. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135: 109–114.

    Article  Google Scholar 

  • Cornelissen, J.H.C., Perez-Harguindeguy, N., Diaz, S., Grime, J.P., Marzana, B., Cabido, M., Vendramini, F., Cerabolini, B. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143: 191–200.

    Article  Google Scholar 

  • Cornelissen, J.H.C., Aerts, R., Cerabolini, B., Werger, M.J.A., & Van der Heijden, M.G.A. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia. 129: 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen, J.H.C., Quested, H.M., van Logtestijn, R.S.P., Pérez-Harguindeguy, N., Gwynn-Jones, D., Díaz, S., Callaghan, T.V., Press M.C., & Aerts, R. 2006. Foliar pH as a new plant trait: Can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types? Oecologia 147: 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, N.T. & Sollins, P. 1973. Continuous measurement of carbon dioxide evolution from partitioned forest floor components. Ecology 54: 406–412.

    Article  CAS  Google Scholar 

  • Eaton, J.M. & Lawrence, D. 2006. Woody debris stocks and fluxes during succession in a dry tropical forest. For. Ecol. Manage. 232: 46–55.

    Article  Google Scholar 

  • Farrar, J., Hawes, M., Jones, D. & Lindow, S. 2003. How roots control the flux of carbon to the rhizosphere. Ecology 84: 827–833.

    Article  Google Scholar 

  • Fisher, J.L., Veneklaas, E.J., Lambers, H., & Loneragan, W.A. 2006. Enhanced soil and leaf nutrient status of a Western Australian Banksia woodland community invaded by Ehrharta calycina and Pelargonium capitatum. Plant Soil 284: 253–264.

    Article  CAS  Google Scholar 

  • Flanagan, P.W. & Van Cleve, K. 1983. Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13: 795–817.

    Article  CAS  Google Scholar 

  • Fox, R.H., Myers, R.J.K., & Vallis, I. 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129: 251–259.

    CAS  Google Scholar 

  • Garnier, E., Cortez, J., Billes, G., Navas, M.L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., & Toussaint, J.P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630– 2637.

    Article  Google Scholar 

  • Gershenzon, J. 1984. Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Phytochemical adaptations to stress, B.N. Timmermann, C. Steelink, & F.A. Loewus (eds.). Plenum Press, New York, pp. 273–321.

    Chapter  Google Scholar 

  • Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climate warming. Ecol. Appl. 1: 182–195.

    Article  Google Scholar 

  • Griffiths, B.S., Welschen, R., Van Arendonk, J.J.C.M., & Lambers, H. 1992. The effects of nitrogen supply on bacteria and bacterial-feeding fauna in the rhizosphere of different grass species. Oecologia 91: 253–259.

    Article  Google Scholar 

  • Harris, M.M. & Riha, S.J. 1991. Carbon and nitrogen dynamics in forest floor during short-term laboratory incubations. Soil Biol. Biochem. 23: 1035–1041.

    Article  CAS  Google Scholar 

  • Hättenschwiler, S. & Vitousek, P.M. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 15: 238–243.

    Article  PubMed  Google Scholar 

  • Hobbie, S.E. 1992. Effects of plant species on nutrient cycling. Trends Ecol. Evol. 7: 336–339.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie, S.E. 1995. Direct and indirect effects of plant species on biogeochemical processes in arctic ecosystems. In: Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences, F.S. Chapin III & C. Körner (eds.). Springer-Verlag, Berlin, pp. 213–224.

    Google Scholar 

  • Hobbie, S.E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66: 503–522.

    Article  Google Scholar 

  • Hungate, B.A., Canadell, J.C., & Chapin III, F.S. 1996. Plant species mediate changes in microbial N in response to elevated CO2. Ecology 77: 2505–2515.

    Article  Google Scholar 

  • Johnson, L.C. & Damman, A.W.H. 1993. Decay and its regulation in Sphagnum peatlands. Adv. Bryol. 5: 249–296.

    Google Scholar 

  • Kandil, F.E., Grace, M.H., Seigler, D.S., & Cheeseman, J.M. 2004. Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees 18: 518–528.

    Article  CAS  Google Scholar 

  • Leyval, C. & Berthelin, J. 1993. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol. Fertil. Soils 15: 259–267.

    Article  CAS  Google Scholar 

  • Middleton, B.A. & McKee, K.L. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J. Ecol. 89: 818–828.

    Article  Google Scholar 

  • Mitchell, M. & Fuller, R. 1988. Models of sulfur dynamics in forest and grassland ecosystems with emphasis on soil processes. Biogeochemistry 5: 133–163.

    Article  CAS  Google Scholar 

  • Nguyen, C. 2003. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23: 375–396.

    Article  CAS  Google Scholar 

  • Norby, R.J., Cotrufo, M.F., Ineson, P., O’Neill, E.G., & Canadell, J.G. 2001. Elevated CO2, litter chemistry, and decomposition: A synthesis. Oecologia 127: 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Northup, R.R., Yu, Z., Dahlgren, R.A., & Vogt, K.A. 1995. Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229.

    Article  CAS  Google Scholar 

  • Norton, J.M. & Firestone, M.K. 1996. N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol. Biochem. 28: 351–362.

    Article  CAS  Google Scholar 

  • Parmelee, R.W., Ehrenfeld, J.G., & Tate, R.L., III 1993. Effects of pine roots on microorganisms, fauna, and nitrogen availability in two soil horizons of a coniferous forest spodosol. Biol. Fert. Soils 15: 113–119.

    Article  CAS  Google Scholar 

  • Paul, E.A. & Clark, F.E. 1989. Soil microbiology and biochemistry. Academic Press, San Diego.

    Google Scholar 

  • Pérez-Harguindeguy, N., Diaz, S., Cornelissen, J.H.C., Vendramini, F., Cabido, M., & Castellanos, A. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218: 21–30.

    Article  Google Scholar 

  • Read, D.J. & Perez-Moreno, J. 2003. Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance? New Phytol. 157: 475–492.

    Article  Google Scholar 

  • Ruess, R.W., Van Cleve, K., Yarie, J., & Viereck, L.A. 1996. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior taiga forests on the Alaskan interior. Can. J. For. Res. 26: 1326–1336.

    Article  CAS  Google Scholar 

  • Rygiewicz, P.T. & Andersen, C.P. 1994. Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369: 58–60.

    Article  Google Scholar 

  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85: 591–602.

    Article  Google Scholar 

  • Silver, W.L. & Miya, R.K. 2001. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia 129: 407–419.

    Google Scholar 

  • Swift, M.J., Heal, O.W., & Anderson, J.M. 1979. Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Van Breemen, N. 1993. Soils as biotic constructs favouring net primary productivity. Geoderma 57: 183–211.

    Article  Google Scholar 

  • Van Groenigen, K.-J., Six, J., Hungate, B.A., De Graaff, M.-A., Van Breemen, N., & Van Kessel, C. 2006. Element interactions limit soil carbon storage. Proc. Natl. Acad. Sci. USA 103: 6571–6574.

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Veen, J.A., Merckx, R., & Van de Geijn, S.C. 1989. Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass. Plant Soil 115: 179–188.

    Article  Google Scholar 

  • Van Vuuren, Aerts, R., Berendse, F., & De Visser, W. 1992. Nitrogen mineralization in heathland ecosystems dominated by different plant species. Biogeochemistry 16: 151–166.

    Article  Google Scholar 

  • Verhoeven, J.T.A. & Toth, E. 1995. Decomposition of Carex and Sphagnum litter in fens: Effect of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem. 27: 271–275.

    Article  CAS  Google Scholar 

  • Wilschke, J., Hoppe, E., & Rudolph, H.-J. 1990. Biosynthesis of sphagnum acid. In: Bryophytes: Their chemistry and chemical taxonomy, H.D. Zinsmeister & R. Mues (eds.). Oxford Science Publications, Oxford, pp. 253–263.

    Google Scholar 

  • Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Groom, P.K., Hikosaka, K., Lee, W., Lusk, C.H., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Warton, D.I., & Westoby, M. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecol. Biogeog. 14: 411–421.

    Article  Google Scholar 

  • Zak, D.R., Blackwood, C.B., & Waldrop, M.P. 2006. A molecular dawn for biogeochemistry. Trends Ecol. Evol. 21: 288–295.

    Article  PubMed  Google Scholar 

  • Zhu, W. & Ehrenfeld, J.G. 1996. The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil. Plant Soil 179: 109–118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Decomposition. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_18

Download citation

Publish with us

Policies and ethics