Skip to main content

Vasoactive Amines and Inotropic Agents

  • Chapter
Surgical Intensive Care Medicine

Abstract

One of the central goals of the clinician caring for critically ill patients is to maintain hemodynamic stability. This requires knowledge of the anatomy and physiology of the autonomic nervous system, the cardiovascular system, and their interaction. This chapter reviews the autonomic innervation of the heart and peripheral circulation and the cardiovascular effects of the vasoactive amines and various inotropes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawson NW, Meyer DJ. Autonomic nervous system: physiology and pharmacology. In: Barash PG, Cullen BF, Stoelting RK, editors. Clinical anesthesia. Philadelphia: Lippincot-Raven; 1997. p. 243–309.

    Google Scholar 

  2. Rozec B, Gauthier C. beta3-adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol Ther. 2006;111:652–673.

    Article  PubMed  CAS  Google Scholar 

  3. Strosberg AD. Association of beta-3-adrenoceptor polymorphism with obesity and diabetes: current status. Trends Pharmacol Sci. 1997;18:449–455.

    PubMed  CAS  Google Scholar 

  4. Shihara N, Yasuda K, Moritani T, et al. The association between Trp64Arg polymorphism of the beta 3-adrenergic receptor and autonomic nervous system activity. J Clin Endocrinol Metab. 1999;84:1623–1627.

    Article  PubMed  CAS  Google Scholar 

  5. Oliver G, Schäfer EA. The physiological effects of extracts of the suprarenal capsules. J Physiol. 1895;18:230–276.

    PubMed  CAS  Google Scholar 

  6. Hoffman BB, Lefkowitz RJ. Cathecolamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman GA, editors. Goodman & Gilman’s: The pharmacological basis of therapeutics. New York: McGraw-Hill; 1996. p. 199–248.

    Google Scholar 

  7. Stoelting RK, Hiller SC. Pharmacology and physiology in anesthetic practice. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 292–310.

    Google Scholar 

  8. DiSesa VJ. The rational selection of inotropic drugs in cardiac surgery. J Card Surg. 1987;2:385–406.

    Article  PubMed  CAS  Google Scholar 

  9. Struthers AD, Reid JL. The role of adrenal medullary cathecolamines in potassium homeostasis. Clin Sci. 1984;66:377–382.

    PubMed  CAS  Google Scholar 

  10. Van Maanen EF, Banning JW, Roebel LE, Morgan JP. Dopamine and norepinephrine increase venous return by stimulating alpha and beta adrenoreceptors in the dog. J Cardiovasc Pharmacol. 1988;11:627–634.

    Article  PubMed  Google Scholar 

  11. Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med. 2004;32:S455–S465.

    Article  PubMed  Google Scholar 

  12. Di Giantomasso D, Morimatsu H, May CN, Bellomo R. Intrarenal blood flow distribution in hyperdynamic septic shock: effect of norepinephrine. Crit Care Med. 2003;31:2509–2513.

    Article  PubMed  Google Scholar 

  13. Martin C, Vivand X, Leone M, et al. Effect of norepinephrine on the outcome of septic shock. Crit Care Med. 2000;28:2758–2765.

    Article  PubMed  CAS  Google Scholar 

  14. Sumikawa K, Hayashi K, Yamatodani A, Yoshiya I. Contribution of the lungs to the clearance of exogenous dopamine in humans. Anesth Analg. 1991;72:622–626.

    Article  PubMed  CAS  Google Scholar 

  15. Goldberg LI, Rajfer S. Dopamine receptors: applications in clinical cardiology. Circulation. 1985;72:245–248.

    Article  PubMed  CAS  Google Scholar 

  16. Baldwin L, Henderson A, Hickman P. Effect of postoperative low-dose dopamine on renal function after elective major vascular surgery. Ann Intern Med. 1994;120:744–747.

    Article  PubMed  CAS  Google Scholar 

  17. Hilberman M, Maseda J, Stinson E, et al. The diuretic properties of dopamine in patients after open heart operation. Anesthesiology. 1984;61:489–494.

    Article  PubMed  CAS  Google Scholar 

  18. Goldberg L. Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev. 1972;24:1–29.

    PubMed  CAS  Google Scholar 

  19. Thompson BT, Cockrill BA. Renal-dose dopamine: a Siren song? Lancet. 1994;334:7–8.

    Article  Google Scholar 

  20. Gelman S. Mushlin PS Catecholamine-induced changes in the splanchic circulation affecting systemic hemodynamics. Anesthesiology. 2004;100:434–439.

    Article  PubMed  Google Scholar 

  21. Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med. 1996;24:1580–1590.

    Article  PubMed  Google Scholar 

  22. Van den Berghe G, de Zegher F, Wouters P, et al. Dehydroepiandrosterone sulphate in critical illness: effect of dopamine. Clin Endocrinol. 1995;43:457–463.

    Article  Google Scholar 

  23. Devins S, Miller A, Herndon BL, et al. Effects of dopamine on T-lymphocyte proliferative responses and serum prolactin concentrations in critically ill patients. Crit Care Med. 1992;20:1644–1649.

    Article  PubMed  CAS  Google Scholar 

  24. DiSesa V, Brown E, Mudge GH, et al. Hemodynamic comparison of dopamine and dobutamine in the postoperative volume-loaded, pressure-loaded, and normal ventricle. J Thorac Cardiovasc Surg. 1982;83:256–263.

    PubMed  CAS  Google Scholar 

  25. Butterworth JF, Piccione W, Berrizbeitia LD, et al. Augmentation of venous return by adrenergic agonists during spinal anesthesia. Anesth Analg. 1986;65:612–616.

    Article  PubMed  CAS  Google Scholar 

  26. Stoelting RK, Hiller SC. Pharmacology and physiology in anesthetic practice. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 317–318.

    Google Scholar 

  27. Lewis KP. Early intervention of inotropic support in facilitating weaning from cardiopulmonary bypass: the New England Deaconess Hospital experience. J Cardiothorac Vasc Anesth. 1993;7:40–45.

    Article  PubMed  CAS  Google Scholar 

  28. Lewis KP. The use of amrinone in noncardiac anesthesia. J Cardiothorac Anesth. 1990;4(5) Suppl 5:34–40.

    Google Scholar 

  29. Leier CV. General overview and update of positive inotropic therapy. Am J Med. 1986;81(Suppl 4C):40–45.

    Article  PubMed  CAS  Google Scholar 

  30. Feneck RO, et al. Intravenous milrinone following cardiac surgery: II. Influence of baseline hemodynamics and patient factors on therapeutic response. J Cardiothorac Vasc Anesth. 1992;6:563–567.

    Article  PubMed  CAS  Google Scholar 

  31. Treschan TA, Peters J. The vasopressin system: physiology and clinical strategies. Anesthesiology. 2006;105:599–612.

    Article  PubMed  CAS  Google Scholar 

  32. Laundry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–1125.

    Article  Google Scholar 

  33. Patel BM, Chittock DR, Russell JA, et al. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–582.

    Article  PubMed  CAS  Google Scholar 

  34. Sharshar T, Carlier R, Blanchard A, et al. Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med. 2002;30:497–500.

    Article  PubMed  CAS  Google Scholar 

  35. Holmes CL, Granton JT, Landry DW. Science Review: Vasopressin and the cardiovascular system part 2 – clinical physiology. Crit Care. 2004;8:15–23.

    Article  PubMed  Google Scholar 

  36. Malay MB, Ashton RC Jr, Landry DW, Townsend RN. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma. 1999;47:699–703.

    Article  PubMed  CAS  Google Scholar 

  37. Masutani S, Senzaki H, Ishido H, et al. Vasopressin in the treatment of vasodilatory shock in children. Pediatr Int. 2005;47:132–136.

    Article  PubMed  CAS  Google Scholar 

  38. Morales DL, Gregg D, Helman DN, et al. Arginin vasopressin in the treatment of 50 patients with postcardiotomy vasodilatory shock. Ann Thorac Surg. 2000;69:102–106.

    Article  PubMed  CAS  Google Scholar 

  39. Chen JM, Cullinane S, Spanier TB, et al. Vasopressin deficiency and pressor hypersensitivity in hemodynamically unstable organ donors. Circulation. 1999;100:II244–II246.

    PubMed  CAS  Google Scholar 

  40. ECC Committee, Subcommittees and Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2005;112:IV1–IV203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lewis, K.P., Gonzalez, R.M., Balonov, K. (2010). Vasoactive Amines and Inotropic Agents. In: O’Donnell, J.M., Nácul, F.E. (eds) Surgical Intensive Care Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77893-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77893-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77892-1

  • Online ISBN: 978-0-387-77893-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics