Skip to main content

Behavioral and Neurophysiological Aspects of Target Interception

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

This chapter focuses on the behavioral and neurophysiological aspects of manual interception. We review the most important elements of an interceptive action from the sensory and cognitive stage to the motor side of this behavior. We describe different spatial and temporal target parameters that can be used to control the interception movement, as well as the different strategies used by the subject to intercept a moving target. We review the neurophysiological properties of the parietofrontal system during target motion processing and during a particular experiment of target interception. Finally, we describe the neural responses associated with the temporal and spatial parameters of a moving target and the possible neurophysiological mechanisms used to integrate this information in order to trigger an interception movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen RA. Neural mechanisms of visual motion perception in primates. Neuron 18: 865–872, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia-Mayer A, Ferraina S, Genovesio A, Marconi B, Squatrito S, Molinari M, Lacquaniti F, Caminiti R. Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. Cereb Cortex 11: 528–544, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bradley DC, Maxwell M, Andersen RA, Banks MS, Shenoy KV. Neural mechanisms of heading perception in primate visual cortex. Science 273: 1544–1547, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Brouwer AM, Brenner E, Smeets JBJ. Hitting moving objects: The dependency of hand velocity on the speed of the target. Exp Brain Res 133: 242–248, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Bruce C, Desimone R, and Gross CG. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46: 369–384, 1981.

    PubMed  CAS  Google Scholar 

  • Cheng K, Fujita H, Kanno I, Miura S, and Tanaka K. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. J Neurophysiol 74: 413–427, 1995.

    PubMed  CAS  Google Scholar 

  • Colby CL, Duhamel JR, and Goldberg ME. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol 69: 902–914, 1993.

    PubMed  CAS  Google Scholar 

  • De Lussanet MHE, Smeets JBJ, Brenner E. The effect of expectations on hitting moving targets: Influence of the preceding target’s speed. Exp Brain Res 137:246–248, 2001.

    Article  PubMed  Google Scholar 

  • Donkelaar P van, Lee RG, Gellman RS. Control strategies in directing the hand to moving targets. Exp Brain Res 91: 151–161, 1992.

    Article  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65: 1329–1345, 1991.

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J Neurosci 15: 5192–5208, 1995.

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH. Medial superior temporal area neurons respond to speed patterns of optic flow. J Neurosci 17: 2839–2851, 1997.

    PubMed  CAS  Google Scholar 

  • Field DT, Wann JP. Perceiving time to collision activates the sensorimotor cortex. Curr Biol 15: 453–458, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47: 381–391 , 1954.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP. Neural aspects of cognitive motor control. Curr Opin Neurobiol 10: 238–241, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ. The ecological approach to visual perception. Houghton Mifflin Company, Boston, 1979.

    Google Scholar 

  • Gray R. Behavior of college baseball players in a virtual batting task. J Exp Psychol Hum Percept Perform 28:1131–1148, 2002a.

    Article  Google Scholar 

  • Gray R. “Markov at the bat”: A model of cognitive processing in baseball batters. Psychol Sci 13: 543–548, 2002b.

    Article  Google Scholar 

  • Hatsopoulos N, Gabbiani F, Laurent G. Elementary computation of object approach by a wide-field visual neuron. Science 270: 1000–1003, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F.Representation of visual gravitational motion in the human vestibular cortex. Science 308: 416–419, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Johnson PB, Ferraina S, Bianchi L, Caminiti R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6: 102–119, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Judge SH, Rind FC, The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories. J Exp Biol 200: 2209–2216, 1997.

    PubMed  Google Scholar 

  • Lacquaniti F, Carrozzo M, Borghese NA. Time-varying mechanical behavior of multi-jointed arm in man. J Neurophysiol 69: 1443–1464, 1993.

    PubMed  CAS  Google Scholar 

  • Lee DN. A theory of visual control of braking based on information about time-to-collision. Perception 5: 437–459, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Lee DN, Reddish PE. Plummeting gannets: a paradigm of ecological optics. Nature 293: 293–294, 1981.

    Article  Google Scholar 

  • Lee DN. Guiding movement by coupling taus. Ecological Psychol 10: 221–250, 1998.

    Article  Google Scholar 

  • Lee DN. Georgopoulos AP, Clark MJ, Craig CM, Port NL.Guiding contact by coupling the taus of gaps. Exp Brain Res 139: 151–159, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Port NL. Georgopoulos AP. Manual interception of moving targets II. On-line control of overlapping submovements. Exp Brain Res 116: 421–433, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38: 317–327, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lisberger SG , Movshon JA. Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys. J. Neurosci. 19: 2224–2246, 1999.

    PubMed  CAS  Google Scholar 

  • Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, Lacquaniti F, Caminiti R. Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex 11: 513–27, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mason AH, Carnahan H. Target viewing time and velocity effects on prehension. Exp Brain Res 127: 83–94, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Matelli M, Luppino G. Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage 14: S27–32, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JH, Van Essen DC. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol. 49: 1127–1147, 1983.

    PubMed  CAS  Google Scholar 

  • Merchant, H., Battaglia-Mayer, A and Georgopoulos, A.P. Effects of optic flow in Motor Cortex Area 7a. J Neurophysiol 86: 1937–1954, 2001.

    PubMed  CAS  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos, A.P. Functional Organization of Parietal Neuronal Responses to Optic Flow Stimuli. J Neurophysiol 90: 675–682, 2003a.

    Article  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos, AP. Interception of real and apparent circularly moving targets: Psychophysics in Human Subjects and Monkeys. Exp Brain Res 152: 106–112, 2003b.

    Article  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos, AP. Neural responses in motor cortex and area 7a to real and apparent motion. Exp Brain Res 154: 291–307, 2004a.

    Article  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos, AP. Neural responses during interception of real and apparent circularly moving targets in Motor Cortex and Area 7a. Cereb Cortex 14: 314–331, 2004b.

    Article  Google Scholar 

  • Merchant H, Battaglia-Mayer A, Georgopoulos, AP. Decoding of Path-Guided Apparent Motion from Neural Ensembles in Posterior Parietal Cortex. Exp Brain Res (2005) 161: 532–540, 2005.

    Article  PubMed  Google Scholar 

  • ∗Merchant, H. and Georgopoulos, A.P. Neurophysiology of perceptual and motor aspects of interception. Review. J Neurophysiol (2006) 95: 1–13.

    Article  PubMed  Google Scholar 

  • Motter BC, Mountcastle, VB The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. J Neurosci 1: 3–26, 1981.

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function. In: The mindful brain, edited by Edelman GM and VB Mountcastle. Cambridge: MIT press, 1978, p. 7–50.

    Google Scholar 

  • Newsome WT, Britten KH, Salzman CD, and Movshon JA. Neuronal mechanisms of motion perception. Cold Spring Harb Symp Quant Biol 55: 697–705, 1990

    PubMed  CAS  Google Scholar 

  • Phinney RE, Siegel RM. Speed selectivity for optic flow in area 7a of the behaving monkey. Cereb Cortex 10: 413–421, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Port NL, Lee D, Dassonville P, Georgopoulos AP. Manual interception of moving targets. I. Performance and movement initiation. Exp Brain Res 116: 406–420, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Rind CF, Simmons PJ. Seeing what is coming: building collision-sensitive neurons. TINS 22: 215–220, 1999.

    PubMed  CAS  Google Scholar 

  • Shepard RN, Zare SL. Path-guided apparent motion. Science 220: 632–634, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Siegel RM, Read HL. Analysis of optic flow in the monkey parietal area 7a. Cereb Cortex 7: 327–346, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Frost BJ. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nature Neurosci 1: 296–303, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tresilian JR. Visually timed action: time-out for tau? Trends Cognit Sci 3: 301–310, 1999.

    Article  Google Scholar 

  • Tresilian JR, Lonergan A. Intercepting a moving target: Effects of temporal precision constraints and movement amplitude. Exp Brain Res 142: 193–207, 2002.

    Article  PubMed  Google Scholar 

  • Tresilian JR, Oliver J, Carroll TJ. Temporal precision of interceptive action: Differential effects of target size and speed. Exp Brain Res 148: 425–438, 2003.

    PubMed  CAS  Google Scholar 

  • Tresilian JR. The accuracy of interceptive action in time and space. Exerc Sport Sci Rev. 32: 167–173, 2004.

    Article  PubMed  Google Scholar 

  • ∗Tresilian JR. Hitting a moving target: Perception and action in the timing of rapid interceptions. Percept Psychophys 67: 129–149, 2005.

    Article  PubMed  Google Scholar 

  • Tresilian JR, Houseman JH. Systematic variation in performance of an interceptive action with changes in the temporal constraints. Q J Exp Psychol A 58: 447–466, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC, Maunsell JH, and Bixby JL. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199: 293–326, 1981.

    Article  PubMed  Google Scholar 

  • Wann JP. Anticipating arrival: Is the tau margin a specious theory? J Exp Psychol Hum Percept Perform 22: 1031–1048, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20: 25–42, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Zago M, Bosco G, Maffei V, Iosa M, Ivanenko Y P, Lacquaniti F. Internal models of target motion: Expected dynamics overrides measured kinematics in timing manual interceptions. J Neurophysiol 91: 1620–1634, 2004.

    Article  PubMed  Google Scholar 

  • ∗Zago M, Lacquaniti F. Cognitive, perceptual and action-oriented representations of falling objects. Neuropsychol 43: 178–188, 2005.

    Article  Google Scholar 

  • Zeki, SM. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236: 549–573, 1974.

    PubMed  CAS  Google Scholar 

  • Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, and Frackowiak RS. A direct demonstration of functional specialization in human visual cortex. J Neurosci 11: 641–649, 1991.

    PubMed  CAS  Google Scholar 

  • The references marked with an asterisk (∗) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Merchant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Merchant, H., Zarco, W., Prado, L., Pérez, O. (2009). Behavioral and Neurophysiological Aspects of Target Interception. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_10

Download citation

Publish with us

Policies and ethics